
TUGboat authors’ guide

Barbara Beeton and Ron Whitney

With this report we hope to fill a lacuna (some
might say “void”) whose existence we have been
attributing to the usual factors: tight schedules,
alternative priorities and warty TEX code. We now
feel the macros in use for TUGboat have stabilized
to the extent that documentation and suggestions
for authors will remain fairly constant, and we
hope this article can serve as a reasonable guide to
preparation of manuscripts for TUGboat. Authors
who have used the TUGboat macros before will
note several changes (including more modern names
for the style files). Suggestions and comments are
quite welcome at the addresses listed below.

TUGboat was originally typeset with only
a plain-based package. Later, as demand for
style files follows wherever LATEX devotees wander,
a TUGboat variant of the LATEX article class
was created — see the separate package tugboat

(https://ctan.org/pkg/tugboat). The two macro
sets yield much the same output, and many input
conventions are identical, with differences where
they seemed natural.

Below we describe various aspects of the TUG-
boat package for the plain-based macros. We
conclude with some general suggestions to help
make the lives of those on the receiving end of (any
kind of) electronic copy a little easier.

The plain-based macros: tugboat.sty

The macros are contained in two files, tugboat.sty
and tugboat.cmn.1

General description of tags. We attempt wher-
ever possible to tag the various elements of TUG-
boat articles in a “generic” way, modified in some
respects by convenience. Authors and editors need
tools to shape their articles to the form they de-
sire, but we also wish to encourage a tagging style
which is appropriate for electronic interchange. It
seems unfair to expect much thought from authors
concerning the markup of their information if we

Revised March 1992, May 2006, May 2012, Sep-
tember 2016; the original appeared in TUGboat 10,
no. 3, November 1989.

1 1) A file tugproc.sty is also distributed, but
no longer used. 2) tugboat.cmn used to be named
tugboat.com, but that notation was in conflict
with conventions of MS-DOS and other operating
systems; no conflicts are known to exist for the new
name.

TUGboat Authors’ Guide, March 2022 1

only provide a bag of widgets and do-hickies to
hack and pound an article together. The tags
whose use we encourage are the higher-level tags
that mark the logical document structure. Below
these are formatting macros that we recognize may
be essential for certain applications. Both sorts of
tags are described in the following article.

Generally, to “mark up” the data 〈foo〉, a tag
\xxx will precede 〈foo〉 and \endxxx will follow
(thus: \xxx 〈foo〉\endxxx). We use the {...}

form to delimit arguments of lower-level formatting
macros. Optional commands follow tags and are
enclosed in [...], à la LATEX. Several options
may be enclosed within one set of square brackets,
or each option may be enclosed in its own set of
brackets. These “options” are actually just TEX
commands, and it is always possible to insert raw
TEX code as an option. Such practice violates
truly generic markup, but it is helpful and at least
confines The Raw and Dirty to a smaller area.

Perhaps a little more detail is of use to some
readers here. Upon encountering a tag, the general
operational scheme of the macros is as follows:

〈read tag〉
\begingroup

〈set defaults〉
\the\every...

〈read options〉
〈branch to appropriate action,

using “argument” as necessary〉
〈cleanup〉
\endgroup

The scheme shows that code inserted as an option
is localized and that it may be used to override
certain defaults and to guide branching. Things are
not always simple, however. Sometimes parameters
are set after a branch is taken (e.g. the macros
might only call \raggedright after determining
whether the mode is “\inline” or “\display”),
and, despite localization, parameter setting might
affect the current paragraph if a branch has yet to
be taken. This is not to say the macros don’t work,
but rather that those authors who venture beyond
the documented regions of the macros should do so
with their eyes open.

For convenience, we also allow the * as a
delimiter for the higher-level tags; thus we could
use either

\title \TUB\/ Authors’ Guide \endtitle

or

\title * \TUB\/ Authors’ Guide *

to indicate the title of this paper. To typeset a
* within text delimited by *, the plain control

sequence \ast has been extended to give * in text
and the usual ∗ in math.

This markup scheme may suffer at the hands
of TEX’s parsing mechanism when tagged data is
nested. In these cases, one may group ({...})
embedded data so that TEX knows to proceed to
the next \end... or *.

In the cases where we show extra spaces and
carriage returns around arguments in this article,
those (discretionary) spaces are accommodated in
the macros. Thus, for example, when the argument
to \title above is typeset, \ignorespaces and
\unskip surround it and the extra spaces have no
untoward effect. Spaces are also gobbled between
options.

Outer form. At the outermost level, a source file
will have the form (using the *...* delimiters):

\input tugboat.sty

〈perhaps additional macros for article〉

\title * 〈title〉 *

\author * 〈author〉 *

\address * 〈address〉 *

\netaddress * 〈network address〉 *

\article

...

〈body of article〉
...

\makesignature

\endarticle

Data preceding \article is saved and typeset
when \article is encountered. Each author should
have his/her own

\author ...

\address ...

\netaddress ...

block, and the macros will do their best to combine
the information properly in the appropriate places.
Explicit linebreaks can be achieved within any of
these items via \\. Title and authors are, of course,
set at the beginning of an article; the address
information is listed separately in a “signature”
near the end of an article, and is present for the
convenience of those who might photocopy excerpts
from an issue of TUGboat. \makesignature does
the typesetting work. Generally authors are listed
separately in the signature. In cases where authors
and addresses are to be combined, one may use
\signature{...} and \signaturemark with some
or all of

\theauthor {〈author number〉}
\theaddress {〈author number〉}
\thenetaddress {〈author number〉}

2 TUGboat Authors’ Guide, March 2022

to get the desired result. For example, for an article
with2

\author * Ray Goucher *

\address * \TUG *

\netaddress *TUG@Math.AMS.com*

\author * Karen Butler *

\address * \TUG *

\netaddress *TUG@Math.AMS.com*

we could say

\signature {

\signaturemark

\theauthor1 and \theauthor2\\

\theaddress1\\

\thenetaddress1}

to obtain the signature

� Ray Goucher and Karen Butler
TEX Users Group
TUG@Math.AMS.com

Use of at least \thenetaddress is recommended for
this just so that the network address gets formatted
properly. The optional command [\network{...}]

will introduce the network address with a network
name, so

\netaddress[\network{Internet}]

* TUGboat@Math.AMS.com *

produces

Internet: TUGboat@Math.AMS.com

\endarticle marks the end of input and is
defined as \vfil\end for most uses. We redefine
it as \endinput to assemble streams of articles in
TUGboat.

Section heads. Heads of sections, subsections,
etc. are introduced with \head, \subhead, etc.,
respectively. The underlying macros all use \head,
so \endhead is the long-form ending for all these
tags. For example, the first two heads of this article
could have been keyed as

\head The \plain-based macros:

{\tt tugboat.sty} \endhead

and

\subhead General description of

tags \endhead

In TUGboat style, the paragraph following a
first-level head is not indented. This is achieved

2 Editor’s note: The TUGboat email address
shown in examples was current when this article
first appeared, but is now obsolete; it has been left
intact to avoid other problems. The correct address
is now TUGboat@tug.org.

by a look-ahead mechanism which gobbles \pars
and calls \noindent. Actually all of the \...head

tags gobble pars and spaces after their occurrence.
This allows one to enter a blank line in the source
file between head and text, such practice being a
visual aid to your friendly TUGboat editors (if not
to you). Be careful of that \noindent after a first-
level head: you will be in horizontal mode after the
\head *...*, so spaces which appear innocuous,
may not be so.

Lists. Lists are everywhere, and a simple list hier-
archy can transform a one-dimensional typesetting
problem into something nasty. All of which is to
say, we are certainly not done with this area of
tagging, but here are the available macros.

Not surprisingly, \list marks the beginning of
a list. A list can be itemized, wherein each item is
tagged with \item, or unitemized wherein items are
delimited by ^^M (the end of your input line). The
itemized style is the default and [\unitemized]

will get the other. Tags for the items default to the
\bullet (= •), but can be changed by feeding an
argument to \tag{...}. The [\tag{...}] option
used with \list assigns the tag for each item of
the entire list, while [\tag{...}] used with \item

changes only the tag for that item. The obvious
dynamical tags are available with options

\numbered

\romannumeraled

\lettered (lowercase)
\Lettered (uppercase)

Lists can be set in several columns by setting
\cols=.... The columns are aligned on their top
baselines and the user must break the columns with
\colsep. Thus,

\list[\unitemized\numbered][\cols=2]

Fourscore

and seven

years ago

our fathers

\colsep

brought forth

on this

continent

\endlist

yields

1. Fourscore
2. and seven
3. years ago
4. our fathers

5. brought forth
6. on this
7. continent

\everylist is a token register which is scanned
at the beginning of each list after the default
parameters are set and before options are read. If

TUGboat Authors’ Guide, March 2022 3

you want all your lists numbered, for example, you
might insert

\everylist{\numbered}

at the top of your file rather than giving an option
to each list.

Implementation of sublists is under construc-
tion.

Verbatim modes. There are several variations
on this theme. In each case, text is printed in a
typewriter font and (almost) all input characters
produce the glyph in the font position of their
character-code (i.e. you get what you type, no
escaping it). In addition to the long form

\verbatim...\endverbatim

the | character can be used to enter and leave ver-
batim mode, acting as a toggle much as the $ does
with math. |...| produces inline verbatim text,
while ||...|| displays its output. \verbatim itself
defaults to display form, but \verbatim[\inline]

and its contraction \verbinline (both terminated
by \endverbatim) produce the inline form. ^^M

yields a space inline, and a new paragraph in dis-
play. Generally, for snippets of text we use the
|...| form, and for longer items the

\verbatim

...

\endverbatim

form (although ||...|| is a good way to display a
single line of code).

The display verbatim output is in nine-point
typewriter by default, as shown in this document.
We’ve found the extra characters of width gained
as a result are very useful. If \smallverbdisplay
is defined to be a no-op, it will be in the usual
ten-point. (This change was introduced in 2012.)

As well as formatting verbatim text between
\verbatim and \endverbatim, \verbatim can read
and write data from and to files. We find this
variant useful in (almost) guaranteeing consonance
between macros in use and their published listings.

\verbatim[\inputfromfile{foo.inp}]

...

\endverbatim

will incorporate the contents of file foo.inp in
the listing before the text between \verbatim and
\endverbatim. The shortened form

\verbfile{foo.inp}\endverbatim

accomplishes the above in the case that the text is
empty. While the code around the data, foo.inp,
above looks excessively long, do remember the
implementation uses the basic \verbatim macro, so

options can also be read after the filename. For
example,

\verbfile{foo.inp}[\numbered]

\endverbatim

would number the lines of the listing.
We often rearrange code supplied to us so that

it fits in the narrow measure of TUGboat’s two-
column format, and we sometimes make corrections
to macro sets (you thought you were perfect!). Since
errors can (and do — we aren’t perfect either) creep
in with these modifications, we use the above tech-
nique to maintain consistency between the listing
published in TUGboat and the underlying macros
used for examples.

To write out information, use

\verbatim[\outputtofile{foo.out}]

...

\endverbatim

An added bonus here is that characters which get
internalized as moribund “letters” or “others” in the
process of listing them, can return revitalized for
perhaps their real use when written out to another
file and read in again. The example above involving
Ray and Karen was coded as

... to get the desired result. For

example, for an article with

\verbatim[\outputtofile{ray.vbm}]

\author * Ray Goucher *

...

\endverbatim

we could say

\verbatim[\outputtofile{sig.vbm}]

\signature {

\signaturemark

\theauthor1 and \theauthor2\\

\theaddress1\\

\thenetaddress1}

\endverbatim

to obtain the signature

\begingroup

\authornumber=0

\input ray.vbm

\input sig.vbm

\makesignature

\endgroup

This is perhaps not the most edifying example,
but you get the gist. (We localize the process of
storing and retrieving these authors and addresses
so as not to clobber our own.) We would encourage
our authors to use these mechanisms for connecting
verbatim text to external files for the sake of
maintaining consistency between active code and
its documentation.

\verbatim scans to \endverbatim (a 12-token
sequence since the \ is of type ‘other’ after

4 TUGboat Authors’ Guide, March 2022

\verbatim gets going). Only this sequence of
characters will interrupt the scan. On the other
hand, | and || scan to the next | and ||, respec-
tively. Needless to say, one should use forms of
\verbatim to set text which contains | (and | or
|| to set text containing \endverbatim if you are
writing an article like this one). Both the | and
\verbatim tags scan ahead for the usual [to check
for options. In those rare cases when the [is really
supposed to be the first character of the verbatim
text, use the option [\lastoption] to stop option
parsing. For example, to show

[\lastoption]

we keyed

|[\lastoption][\lastoption]|

There are situations where one wants to typeset
most things verbatim, but “escape” to format
something exceptional. For example, the insertions
of metacode given in the listings above require some
access to the italic font. By giving the option
[\makeescape\!] to \verbatim, the ! is made an
escape character in that block. Thus,

\verbatim[\makeescape\!]

...

...!it...

...

\endverbatim

really calls the italic font in the middle of the
listing (one might also want to use \makebgroup

and \makeegroup in the options to define characters
to localize this call; see p. 7). Situations will dictate
preferences for what character may be used as an
escape (we use the |, !, and / in this article).
There is also a means of changing the setup of
every occurrence of verbatim mode. The contents
of token register \everyverbatim is scanned after
the defaults of verbatim mode have been set. In
this article, for example, we have made < active
and defined it in such a way that <...> typesets as
metacode. Since \verbatim ordinarily changes < to
type ‘other’ on startup, we key

\everyverbatim{\enablemetacode}

at the beginning of the file to have the proper
adjustment made whenever verbatim is started.

When “escaping” within a verbatim block, one
should be aware that spaces and carriages returns
are active and hence not gobbled as usual. Using
the ! as the active character, one might key

\verbatim[\makeescape\!]

...

!vskip .5!baselineskip

...

\endverbatim

to get an extra half line of space in the middle of
the listing. The space and carriage return on this
line, however, cause problems. The space expands
to \ifvmode\indent\fi\space and TEX will not
like the \indent after \vskip. The ^^M expands to
\leavevmode\endgraf, and therefore puts an extra
line into the listing. The solutions, in this case,
are to drop the space and to use !ignoreendline

(which just gobbles the ^^M), but one should be
aware, generally, that some thought may be required
in these situations.

The option [\numbered] causes the lines of a
verbatim listing to be numbered, while [\ruled]

places rules around the whole thing:

1. 〈code〉
2. 〈more code〉
3. 〈yet more code〉
4. ...

The option [\continuenumbers] picks up the num-
bering where it last left off.

5. 〈more〉
6. 〈and more〉
7. ...

The code underlying \verbatim in display style
implements each line as a paragraph and places
math-display-size whitespace above and below the
verbatim section. Page and column breaks are
permitted within these listings. To prohibit breaks
at specific points or globally, one must insert
penalties or redefine ^^M to insert \nobreak in the
vertical list at the end of each “paragraph” (i.e.
line). We should also note that the bottom of such a
verbatim listing is implemented so that ensuing text
may or may not start a new paragraph depending
on whether an intervening blank line (or \par) is or
is not present.

Hyperlinks and urls. As of version 1.31 of the
plain-based TUGboat macros, released in October
2024, simple commands to create hyperlinks are
available.

• \tbsurl{tug.org} produces an https url,
with the argument typeset in \tt: tug.org.
• \tbhurl{tug.org} is analogous, for http urls:
tug.org.
• \tbmailto{tugboat@tug.org} produces a

mailto url, again with the argument in \tt:
tugboat@tug.org.
• \tbhref{https://tug.org}{the \acro{TUG}

home page is the general command, which
typesets the second argument (no implicit font

TUGboat Authors’ Guide, March 2022 5

changes) as a link to the first argument (no
implicit protocol added): the TUG home page.

At present, these commands only work in
pdfTEX. Other engines will be supported as needed.

The links are displayed without a border, since
we find link borders distracting rather than helpful.
There are no display options, to keep things simple.

Figures and page layout. Figures are keyed as

\figure

〈vertical mode material〉
\endfigure

These are generally implemented as single-column
floating top-insertions, but the options [\mid] and
[\bot] can change specific items to be mid- or
bottom-insertions, respectively. Here we recom-
mend that the long-form terminator be used (not
the *...* form). One can think of the information
“passed” as being “long” in the sense of possi-
bly containing paragraphs, this being a mnemonic
device only. The primary reason for the recommen-
dation is that one is (in some sense, maybe) more
likely to encounter a rogue * in longer text than in
shorter text and hence more likely to encounter a
surprising result due to a macro stopping short at
the wrong *.

Perhaps here is a natural place to mention also
that these macros sometimes read their arguments
and then act, and sometimes act on the fly, not
actually storing an argument as a string of tokens at
all. \title, for example, is in the former category,
while \figure is in the latter. Reasons may vary for
the choice in methods. Storing a string of tokens
as an argument does not allow re-interpretation
of the category codes of the underlying character
string. Thus, storing the “argument” of \figure

all at once might misinterpret some characters
which should appear as verbatim text. For this
reason we set figures as we go and just close off the
box with \endfigure. On the other hand, using
information in multiple situations (e.g. titles and
running heads) requires storing the information as
a token string, not as a typeset list.

When text delimited by *...* is read as
an argument, the *s are dropped by the parsing
process. When the text is handled on the fly, the
first * is gobbled and the second is made active
to perform whatever action is necessary at the
close of the macro. When possible, we prefer to
operate on the fly since nested tags are handled
properly in that case and no memory is consumed
to store arguments. Examination of tugboat.sty

will show which case applies in a given situation,
but this general knowledge may help when trying
to debug those situations in which an unexpected
* has disrupted things.

https://tug.org
http://tug.org
mailto:tugboat@tug.org
https://tug.org/

Odd Fig. 1

A primitive \caption{...} option is available
to \ulap (i.e. lap upward) its argument into the
figure space, but formatting of the caption is left to
the user. For example, the code:

\figure[\top]

[\caption{\centerline{Odd Fig.~1}}]

\vbox to 5pc{}

\endfigure

produces the figure at the top of this column or the
next.

Figures spanning columns at the top and bot-
tom of a page are currently supported only on the
first page of an article, but we expect they will
soon be allowed on any page (a general rewrite of
the output routine is in progress). \twocolfigure

(terminated by \endfigure) starts up such a figure
and currently must occur before any material has
been typeset on the first page (i.e. before \article).

Macros \onecol, \twocol, and \threecol

provide one-, two-, and three-column layouts, but
these cannot currently be intermixed on a page. We
hope to provide automatic column-balancing and
convenient switching between one- and two-column
format within a year. \newpage in each format is
defined to fill and eject enough columns to get to
the next page. \newcol is just \par\vfill\eject.

Command list summary. Tags are listed in the
order discussed. Options are listed under tags.

\title

\author

\address

\netaddress

\network

\signature

\article

\makesignature

\endarticle

\head

\subhead

\subsubhead

\list

\numbered

\romannumeraled

\lettered

\Lettered

\ruled

\tag{...}

6 TUGboat Authors’ Guide, March 2022

\item

\tag{...}

\everylist

\verbatim

\numbered

\ruled

\inputfromfile{...}

\outputtofile{...}

\verbinline

\verbfile

\figure

\mid

\bot

\caption{...}

\twocolfigure

and | and || input syntax.

Common abbreviations and utilities

Definitions of a number of commonly used abbre-
viations such as \MF and \BibTeX are contained in
tugboat.cmn. Please use these whenever possible
rather than creating your own. We will add to the
list as necessary.

A nicety for the sake of appearance is the
command \acro, which sets an acronym in caps one
size smaller than the surrounding text. Compare
CTAN (full size), CTAN (\acro{CTAN}) and ctan
(small caps). Acronyms in tugboat.cmn use \acro

consistently, except in (some) bibliographies.
Several other constructions that we have found

useful for both plain- and LATEX-style input
have been incorporated in tugboat.cmn. Vari-
ous *lap s (\ulap, \dlap, \xlap, \ylap, \zlap)
and *smash es provide means of setting type which
“laps” into neighboring regions. \Dash is an em-
dash with surrounding thinspaces, our preferred
style. \slash is a breakable slash. \cs{foo}

typesets \foo, just like |\foo| (but since \cs is
the usual TUGboat LATEX convention, we support
it here too). The macro

\makestrut [〈ascender dimen〉;
〈descender dimen〉]

allows ad hoc construction of struts.
\makeatletter \catcodes the @ for internal

control-sequences. There are also more general
functions

\makeescape

\makebgroup

\makeegroup

\makeletter

\makeother

\makeactive

that change the category of a given character into
the type mentioned at the end of the macro name.

For example, \makeactive\! changes the category
of the ! to 13. We have given many other examples
of these in this article. Readers may look at the
end of tugboat.cmn after the \endinput statement
to see further documentation on the contents of the
file.

Issue makeup. Constructing an entire issue of
TUGboat requires use of a few features that authors
may notice when articles are returned for proofing.
\xrefto allows for symbolic cross-referencing, but
is enabled only late in the production process.
The distribution version of tugboat.cmn defines
\xrefto so that “???” is typeset whenever it is
called. Not to worry.

We also put notes into the file since there are
many things to remember, and these appear as
\TBremark{...}. Authors can look for such things,
if they are interested.

General coding suggestions

Probably 90% of the code we receive is easily
handled, and for this we are most appreciative.
We do have suggestions of a general nature that
authors should keep in mind as they create articles
for transmission here or anywhere else.

Those who create code find it much easier to
read and understand their own code than do others
who read the “finished” product. In fact, some
people seem to forget that the electronic file will
be viewed (in fact, studied) in addition to the
printed copy. Documentation and uniform habits
of presentation always help. Blank lines are easier
to digest by eye than \pars. Tables and display
math can often be keyed in such a way that rows
and columns are clear in the source file on a display
screen as well as in print. Explanations or warnings
of tricky code can be very helpful. Authors should
place font and macro definitions in one location at
the beginning of an article whenever possible.

Authors should anticipate that articles will un-
dergo some transformation, and that positioning of
some elements may change simply because articles
are run together in TUGboat. Decisions on line-
breaks, pagebreaks, figure and table placement are
generally made after the text is deemed correct.
We avoid inserting “hard” line- and page-breaks
whenever possible, and will not do so, in any case,
until the last minute. We also use floating insertions
for figure and table placement when we first receive
an article. It is easier for us to work with a clean
file containing some bad breaks, overfull boxes or
other unsightliness, than it is to handle a document

TUGboat Authors’ Guide, March 2022 7

containing ad hoc code dedicated to a beauteous
(but narrowly specific) result.

When authors proof their articles in formats
other than that of TUGboat (for example), they
should expect that TUGboat’s changes in pagewidth
and pagedepth may drastically alter text lay-
out. Paragraphs are rebroken automatically when
\hsize and \vsize change, but \centerline does
not break, and we often see tables and math displays
which are rigidly laid out. When possible, authors
might use paragraphing techniques instead of calls
to, say, \centerline, and they should try to code
tables in such a way that widths of columns can be
changed easily. Generally, authors should attempt
to anticipate the work that might be necessary if
requests for other reasonable formats of their texts
are made. In the case of TUGboat, we make
a strong effort to stuff macro listings and tables
into the two-column format. Since these types of
items are not generally susceptible to automatic
line-breaking, we give thanks to stuffings made by
authors ahead of time. In this context, we recom-
mend the use of \verbfile{...} (see the section
‘Verbatim modes’) to maintain consistency between
documentation and reality.

Specifically in the domain of TEX macros, we
find that many authors throw in unnecessary %

characters to end code lines. Except in cases where
the ^^M means something other than end-of-line,
linebreaks can reliably be placed after control-
words and numerical assignments. We have seen
TEX’s buffer size exceeded when % was placed after
every line.

A wider perspective in the matter of naming
macros can prevent problems that occur when defi-
nitions are overwritten as articles are run together.
The names of control sequences used in plain,
LATEX, and AMS-TEX are documented and authors
should avoid using them for other purposes. It is
also wise to avoid commonly used names such as
\temp, \result, \1, and \mac in presenting code
that might be cribbed by other users. The fre-
quently used technique of temporarily \catcodeing
a character to be a letter (e.g. the @) provides a
good method of hiding control sequences so that
they will not be clobbered later. Readers are in
need of small macros to do little tricks, and they
often try suggestions brought forth in TUGboat. A
little extra effort in making these macros consistent
with the macros in wide distribution and in making
them robust will be much appreciated.

Electronic documentation and submissions

The TUGboat styles for both LATEX and plain TEX
are available on CTAN and already included in most
TEX distributions:

https://ctan.org/pkg/tugboat

https://ctan.org/pkg/tugboat-plain

Please address all electronic correspondence to
the TUGboat maildrop:

TUGboat@tug.org

Mail to personal addresses is liable to go unseen if
vacation or illness intervenes. We also request that
you supply an abstract of any expository article.
This will be used as the basis for translation of
abstracts to languages other than that in which the
article is published.

The TUGboat home page on the web is
https://tug.org/TUGboat.

� Barbara Beeton
TEX Users Group
TUGboat@tug.org

� Ron Whitney

8 TUGboat Authors’ Guide, March 2022

