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“Super Cell” System Scenario

F LOS
F High BTS >  300 m
F Rooftop CPE Antenna
F Single Cell / PSA
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Multicell System Scenario

FLow BTS antennas
FNon-LOS propagation/fading
FMore path loss (less range)
FCo-channel Interference
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Propagation Scenario

BTS Sector Antenna

BTS

Ht  2-
7m

0.1 - 7 
km

CPE Directional 
Antenna

Traffic

Ht = 10 -30m

Foliage
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Channel Has Many Dimensions

BTS Antenna Height

CPE Antenna Height

Wind speed/TrafficRange
Beamwidth

Antenna Separation
Terrain/Foliage

Polarization
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Fixed Wireless Channel 
Models
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Suburban Path Loss Model

We propose a model presented in [1]. It is based on 
extensive experimental data collected by AT&T Wireless 
Services in 95 macrocell across US. It covers the following:

- 3 different terrain categories: hilly, moderate and flat terrain

- Low and high base station antenna heights :  10 - 80  m

- Extended to higher frequencies and receiver antenna 
heights

[1]  V. Erceg et. al, “An empirically based path loss model for wireless channels in suburban 
environments,” IEEE J. Select Areas Commun., vol. 17, no. 7, July 1999, pp. 1205-1211.
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Path Loss Model: Cont’

Slope and Fixed Intercept Model:

PL = A + 10 γ log10 (d/do) + s;

Intercept:         A = 20 log10 (4 π do / λ)

Path Loss Exponent:    γ = (a – b hb + c / hb) + x σ ;   hb:10 - 80m

Shadow Fading Standard Deviation:    σ = µσ + z σσ

Frequency Correction Factor: Cf =  6 log10 (f / 1900)

Height Correction Factor:   Ch =  - 10.7 log10(hr /2);  hr: 2 - 8m
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Antenna Gain Reduction Factor (GRF)

In local scattering, when compared to an omnidirectional
antenna, the nominal gain of a directive antenna can be 
significantly reduced.

[2] L.J. Greenstein and V. Erceg, “Gain reductions due to scatter on wireless paths with 
directional antennas,“ IEEE Communications Letters, Vol. 3, No. 6, June 1999 (also in 

VTC’99 Conference Proceedings, Amsterdam, September 1999).

Pure LOS: Full Gain, Ga, is Achieved NLOS: Ga - GRF

Omni antenna

Directional antenna
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Antenna Gain Reduction: Cont’

In [3], approximately 10 dB gain reduction factor can be 
observed from figures for a flat suburban environment for 
a 10o receive antenna (hr = 5.2m). 

The base station antenna height was 43 m and the 
receive antenna heights were 5.2, 10.4, and 16.5 m. This 
result closely matches results reported in [2].

[3] J.W. Porter and J.A. Thweatt, “Microwave propagation characteristics in the MMDS 
frequency band,” ICC’2000 Conference Proceedings, pp. 1578-1582.
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RMS Delay Spread Model

A delay spread model was proposed in [3] based on a large body of 
published reports. The model was developed for rural, suburban, urban, 
and mountainous environments. The model is of the following form:

τrms = T1 dε y

Where τrms is the rms delay spread, d is the distance in km, T1 is the median 
value of τrms at d = 1 km, ε is an exponent that lies between 0.5-1.0, and y is 
a lognormal variate. The model parameters and their values can be found in 

Table III of [3].

[3] L.J. Greenstein, V. Erceg, Y.S. Yeh, and M.V. Clark, “A new path-gain/delay-
spread propagation model for digital Cellular Channels,” IEEE Trans. On Vehicular 
Technology, vol. 46, no. 2, May 1997.
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RMS Delay Spread: Cont’

Antenna Directivity Effect:    

- In [3] It was shown that a 10o directional antenna reduces 
the RMS delay spread 2.6 times in suburban 
environments.

- In [4], it was shown that a 32o directional antenna reduces 
the RMS delay spread 2.3 times.

[3] J.W. Porter and J.A. Thweatt, “Microwave propagation characteristics in the MMDS 
frequency band,” ICC’2000 Conference Proceedings, pp. 1578-1582.
[4] V. Erceg et.al, “A model for the multipath delay profile of fixed wireless channels,” 
IEEE J. Select Areas Commun., vol. 17, no.3, March 1999, pp. 399-410.
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K-Factor Model

In [6,7] the K-factor distribution was found to be
lognormal, with the median as a simple function of 
season, antenna height, antenna beamwidth, and 
distance.

K = Fs Fh Fb Ko d γ u

[6] L.J. Greenstein, S. Ghassemzadeh, V.Erceg, and D.G. Michelson, “Ricean K-
factors in narrowband fixed wireless channels: Theory, experiments, and statistical 
models,” WPMC’99 Conference Proceedings, Amsterdam, September 1999. 
[7] D.S. Baum, V. Erceg et.al., “Measurements and characterization of broadband 
MIMO fixed wireless channels at 2.5 GHz”, Proceedings of ICPWC'2000, Hyderabad, 
2000.
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K-Factor Model: Cont’

Fs    is the seasonal factor = 1 in summer and 2.5 in winter
Fh  is the receiving antenna height factor = (h/3) 0.46 ; h in m
Fb is the antenna beamwidth factor = (b/17) -0.62 ; b in deg.
d is the distance in km 
γ is the exponent  =  - 0.5
Ko is the 1 km intercept = 10 dB 
u    is the zero-mean lognormal variate with a 8.0 dB   standard  

deviation over the cell area.
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K-Factor vs. Distance (Suburban Environments) 
Simulation
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Doppler Power Spectrum

Rounded Spectrum with fD~ 0.1Hz- 2Hz
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Diversity Combining 
Advantage
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Antenna Correlation

For SIMO, MISO, MIMO channels, correlation between 

multiple channels depends on

F Spacing between antennas

F Height of the antennas

F Beamwidth

F Polarization

F Distance from the BTS

F Environment
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Diversity Gain

151 152 N5M

Tx Rx Tx Rx
Tx Rx
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2 x 2 Channel Matrix (Frequency vs. Time) - Measured

2.4 GHz



24February 2002

2 x 2 Channel Matrix (Single Tone) - Measured
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Effect of Combining - Measured Data
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CDF of Tx-Rx Diversity - Measured
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Cell Radii for Systems with Different Orders 
of Diversity

Diversity
Order

Maximum
Allowable
Path loss

Relative
Cell Radius

SISO 1x1 PL 1

SIMO 1x2 PL+13 dB 2.1

MIMO 2x2 PL+16 dB 2.5

MIMO 2x3 PL+19 dB 3.0

Assumptions: Rayleigh flat fading, BER = 10-3 , array gain accounted for, 
1/d4 propagation, uncorrelated fading. 

Source: Theoretical BER vs SNR curves (Proakis, Digital Communications)



28February 2002

Modified SUI (802.16) 
Channel Models
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SUI Channel Model Assumptions

F A cell size of 7km  

F BTS Antenna height: 30m

F CPE antenna height: 6m

F BTS Antenna beamwidth: 120 deg

F CPE Antenna Beamwidth: 360 and 30 deg

F Vertical Polarization only
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SUI-4

SUI – 4 Channel
Tap 1 Tap 2 Tap 3 Units

Delay 0 1.5 4 µs

Power (omni ant.)

90% K-fact. (omni)

75% K-fact. (omni)
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Antenna Correlation: ρENV = 0.3
Gain Reduction Factor: GRF = 4 dB
Normalization Factor: Fomni = -1.9218 dB,

F30°   = -0.4532 dB

Terrain Type: B
Omni antenna: τRMS = 1.257 µs

overall K: K = 0.2 (90%); K = 0.6 (75%)
30° antenna: τRMS = 0.563 µs

overall K: K = 1.0 (90%); K = 3.2 (75%)
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Discussion and Conclusions

For multi-cell BWA deployments:

F K = 0 (Rayleigh fading) must be assumed for robust 

system design 

F Excess delay spread values vary from 0 - 20 µs 

F Antenna Gain Reduction Factors (GRF) must be 

accounted for in link budgets

F Diversity combining dramatically improves 

coverage/reliability of any system


