
M i c r o w a r e ’ s S o f t S t a x ™
N e t w o r k i n g S o l u t i o n

MICROWARE’S SOFTSTAX™ NETWORKING SOLUTION WHITE PAPER

the

superior
networking communications

solution
f i e l d e d • p r o v e n • l o w - r i s k • e a s y - t o - u s e • u n i f i e d a r c h i t e c t u r e

SoftStax™

Communications software development is about more than application development. The baseline
system software, which controls the microprocessor and network interface, must also be created.
Baseline components include:

• A real-time operating system (RTOS)
• One or more network interface device driver(s)
• One or more protocol stack(s) and associated programming interfaces

Today’s software developers must learn the design philosophy behind
each component and forge a coherent software baseline before
application development can be completed. Since each component is
developed using a different design philosophy, creating this baseline can
be extremely challenging. The resulting application environment is
often clumsy, confusing, and unnecessarily large. To make the applica-
tion environment simple and understandable, developers must rewrite
most, if not all, of the components under one unified design philoso-
phy. This paper describes Microware’s SoftStax™

networking solution, the integrated communications framework for OS-
9® . This solution:
• Is a completely open and specified framework
• Ensures all baseline components for the OS-9® Real-Time Operating

System (RTOS) use one optimal design philosophy
• Eliminates interworking each baseline component and provides an application

environment that makes development simple and more understandable

PAGE 1

M i c r o w a r e ’ s S o f t S t a x™

INTRODUCTION

ABSTRACT

Communications software developers face many challenges:
• Short development time
• Not enough developers
• Product reliability concerns
• Lack of effective tools to fix real-time bugs
• Cost/performance pressures
• Rapid technology advances/changes

These challenges reflect one main obstacle — the lack of an optimal software base-line that provides a simple and under-
standable application environment with the ability to “snap in and out” underlying network technologies as they evolve
without disturbing the application. Microware’s networking solution provides a simple and understandable application
environment that enables underlying network technologies to “snap in and out” without disturbing the application. More
finished code is included, making it easy to write network-independent applications. This paper describes the technical
detail behind Microware’s networking solution: the architecture, design philosophy, application environment, and protocol
stack framework that overcomes the obstacles faced during communications software development.

Samir Chatterjee and the Bell Atlantic team members each had over ten years of experi-
ence developing communications software. The tendency was to assume that services
that needed to be provided had to be developed. To the Bell Atlantic team’s surprise, the
Microware SoftStax networking framework already implemented all the details, so the
team could get to the critical tasks—creating new multimedia service network custom

protocols and applications interoperable across multiple
network topologies.

Microware’s networking environment follows gracefully
from the overall architecture and design philosophy of
OS-9 itself. OS-9 implements a unified Input/Output
(I/O) system. The programming interface used by the
application is identical whether the application is using a
hard drive, serial device, or network interface. This
programming interface consists of calls to open, close,
read, write and set/get I/O configuration information
(called setstats and getstats).

PAGE 2

N e t w o r k i n g S o l u t i o n

ARCHITECTURE AND DESIGN PHILOSOPHY

“The biggest problem we had to overcome
using Microware’s OS-9® and SoftStax™

was proving to ourselves that communi-
cations software development could
really be this easy.”
Samir Chatterjee
Bell Atlantic Research

OS-9 Kernel

I/O Manager

Applications
and Utilities

File Manager
Device

Descriptor
Device Driver

File Manager

Device Driver

Initialization

Clock

Shared
Libraries

Trap
Handlers

Device
Descriptor

Every I/O system for OS-9 consists of a file manager, device driver, and device
descriptor. The file manager performs all logical features of the specific I/O system,
implementing the Hardware Abstraction Layer (HAL) for the system. The device
driver controls the specific hardware, distilling driver creation down to hardware ini-
tialization, termination, and an interrupt service routine. The device descriptor is
identifiable by the application that dynamically links all the modules. The application
opens a path using a device descriptor module name. Then OS-9 uses the informa-
tion contained in the device descriptor as a roadmap to create a link between the
application, file manager, and device driver. The link created by OS-9 for the applica-
tion is called a path. The application uses the resulting path to access the services pro-
vided by the I/O system. All modules in the system are fully re-entrant and position
independent, two very important characteristics of an RTOS if dynamic download
and upgrade facilities are to be available.

PAGE 3

Microware’s SoftStax networking solution extends the I/O sys-
tem philosophy by enabling the mapping of not just one driv-
er on a given path, but allows multiple drivers to be stacked
on one another. This extension represents the implementation
of the OSI Model as defined by the International Standards
Organization. The OSI Model specifies abstractly the services
provided within seven stackable layers and is used as the foun-
dation design philosophy for all protocol specifications.
SoftStax represents a concrete implementation of the OSI
Model specification.

Since Microware’s SoftStax models the OSI Model instead of
“fighting” it, protocol layer implementation is easy, under-
standable, and interoperable with other protocol layer (or pro-
tocol driver) implementations for OS-9. It is also important to
note that since the implementation for OS-9 is a natural
extension to the core OS-9 kernel, Microware’s integrated
solution maximizes performance while minimizing footprint
and CPU utilization.

Microware’s environment consists of an Application
Programming Interface (API) called ITEM (Integrated
Telephony Environment for Multimedia), the Stacked
Protocol File Manager (SPF), a template protocol driver
(spproto), a network emulation driver (sploop), and various
HDLC driver implementations. Network-independent appli-
cation examples are also provided and ready to run for quick
familiarization with the environment and providing a guide-
line for application development.

File Manager
Initialize device

Open path to device
Close path to device

Read data
Write Data

De-initialize device Device Descriptor
Logical name

File Manager name
Device driver name

Hardware controller address
Initialization parameters

Map hardware to the
file manager and device driver.

Hardware Independent

Device Driver
Initialize physical device

Read physical unit
Write physical unit
Get device status
Set device status

De-initialize physical device

Hardware Dependent

Physical Hardware

Stacked Protocol File Manager

Network Access API's
(SOCKETS) (ITEM)

Legacy Protocols Device Driver
Framework

Network Emulation

Network Management Custom Applications Example Applications

Hardware specific module

Protocol driver modules

Stacked Protocol
File Manager

Network layer

Physical Layer

OSI Model stacker/unstacker

Data link layer

DevDesc "/net_lyr"

DevDesc "/dlink_lyr"

DevDesc "/phys_lyr"

PAGE 4

SoftStax supports the complete BSD v4.4 sockets interface familiar to many programmers.
In addition, Microware provides an application environment that creates network and proto-
col independent applications. To write an application for Microware’s networking solution,
developers must understand the following concepts:
• Application environment design goals
• Data structures and their use
• API and services provided

Application Environment Design Goals
ITEM defines the application environment of Microware’s SoftStax framework.
SoftStax is an optimal software baseline, providing a simple and understandable
application environment with the ability to snap in and out underlying network
technologies without disturbing the application.

Simple application development — One design goal of ITEM is to eliminate
the complexities involved with an application using network services. With ITEM, the
applications are not forced to build pieces of network-specific messages and pass them
through the API to perform call control. For example, an ATM application is not required
to pass in the channel ID, bearer capability, and low-layer compatibility
information elements as parameters in order make a connection. This simplifies the applica-
tion, frees the application from being network specific and does not require the programmer
to be “ATM-literate.”

Easily understandable applications — A second design goal of ITEM is to use an
API paradigm familiar and intuitive to the programmer while not reflecting a
specific state machine. ITEM achieves this. For example, applications written using an
ISDN API wouldn’t just disconnect. The application would also release after a far end dis-
connect or release complete after initiating disconnection. This is a reflection of the ISDN
state machine transitioning from active to disconnect, release and release complete.

Network independence — The third design goal of ITEM is to specify an API and
data structures, enabling applications to be network independent. ITEM enables application
binaries to run across multiple network topologies without recompiling or relinking.
Network independence is achieved by abstracting properties of the network.

APPLICATION ENVIRONMENT

“We’ve been using Microware’s SofStax networking solution
for more than two years in multi-protocol TCP/IP, ISDN
and custom communications environments. Microware’s uni-
fied architecture has been able to handle everything
I’ve thrown at it.”
Tom Kerner
Senior Development Engineer
Rockwell Collins

Data Structures and Their Use
To achieve application environment design goals, data
structures were created to enable the application to remain
network independent. Abstracting application visible
aspects of any network is the key to making network
independence a reality. Abstractions for the network
device and network addressing were created using struc-
tures called device_type and address_type. The third data
structure in ITEM abstracts the asynchronous notification
method called a notify_type structure. This provides a
level of operating system independence.

The descriptor automatically initializes all of the parame-
ters in the device_type and addr_type structures when the
path is created. Since automatic initialization occurs as an
implicit kernel service, applications need not be aware of
these two structures. This enables applications in their
most simple form to still operate with ITEM. If required,
ITEM contains API calls to get and set all variables within
the device_type and addr_type structures. Applications use the notify_type structure
for network event registration and removal. Notification requests can be set through
the ITEM API for:

• Link down/link up
• Incoming call
• Connection active/far-end hang up
• Data available to be read
• End of MPEG-II program
• Flow control on/off
• Custom protocol or device driver network events

Application Programming Interface (API)
The API is another important characteristic of the application environment. The
ITEM API is modeled after the telephone, a paradigm that everyone is familiar
with. ITEM provides scalable capabilities and is simple to use. However, in cases
where applications require complex network-specific services, add-on communica-
tions paks come with APIs that expose detailed access to particular network topolo-
gies. For example, SoftStax also includes a BSD4.4 compatible socket library. The
advantage of this approach is that the developer knows the level of network inde-
pendence for the libraries used by the application.

The ITEM API contains five main categories of service:
• Device oriented
• Path oriented
• Call control
• Data manipulation
• Asynchronous notification

PAGE 5

“The product and training enabled me to be productive with
Microware’s networking solution in a matter of days. Its flex-
ible architecture enabled me to create custom protocols and
drivers that plug into protocol stacks available from
Microware and third parties.”
Alan Granum
Development Engineer
Nortel

class
trigger

timeout

device_type

mode
call state
receiver state
local address
remote address

class
subclass
address

area

notify_type

addr_type
(local address)

addr_type
(remote address)

Call Parameters Description
ite_ctl_addrset Path ID, Local Addr_type, Set local/remote

Remote Addr_type abstract addressing

ite_ctl_connstat Path ID, Device_type Get device/addr information

ite_ctl_connect Path ID, Local Addr_type, Make a call (notify on connect)
Remote Addr_type, Notify_type

ite_ctl_disconnect Path ID Hang up a call

ite_ctl_answer Path ID, Notify_type Answer call
(notify on connect)

ite_ctl_suspend Path ID Put caller on hold

ite_ctl_resume Path ID, Notify_type Resume call previously on hold
(notify on resumption)

Device-oriented calls – These
calls manipulate individual protocol layers
or device drivers. They include calls to
initialize and terminate individual layers,
get and set permissions for a layer, get the
layer name, and get the type of service the
layer provides.

Path-oriented calls – These calls
manipulate entire protocol stacks for a
given path. Calls to open and close incar-
nations of a protocol stack and to dynami-
cally add and remove protocol layers are
also available. Profiles are used to simplify
the correct quality of service for connec-
tions by the applications. These profiles
are identified by the application as primi-
tives (i.e. VOICE, DATA, MPEG,
IP, etc). This way, applications can request
connections based on a service profile
primitive. The protocol layer maps the
primitive to the specific connection mes-
sages required to create the correct type of
connection for the service desired.

Call-control calls – This group of
calls provides call-control services required
for connection-oriented networks. The
framework of Microware’s SoftStax allows
these calls to be made successfully even if
the application is running over a connec-
tionless network, providing true portabili-
ty across all types of network topologies.

Data manipulation calls – The
data manipulation calls enable synchro-
nous or asynchronous reading and writing
operation. Zero copy across the user inter-
face is available, not just with TCP/IP, but
with all Microware networking protocols
through the read and write mbuf calls.
Data can also be read by packets or indi-
vidual bytes for the convenience of the
application.

PAGE 6

Call Parameters Description

ite_dev_attach Name String, Mode, Handle Initialize the device(layer)

ite_dev_detach Handle De-initialize the device(layer)

ite_dev_getmode Path ID, Mode Get permissions (read,write...)
ite_dev_getname Path ID, Name String Get device(layer) name

ite_dev_gettype Path ID, Input Type, Get device(layer) type
Output Type (OOB signaling, MPEG, ...)

ite_dev_setmode Path ID, Mode Set permissions (read, write...)

Call Parameters Description

ite_path_open Name String, Mode, Path Open protocol stack instance
ID pointer, Address Pointer

ite_path_close Path ID Close protocol stack instance

ite_path_push Path ID, Name String Add layer to stack

ite_path_pop Path ID Remove layer from stack

ite_path_profileget Path ID, Conn Type, Profile Get connection service profile
Size, Profile Buffer

ite_path_profileset Path ID, Conn Type, Profile Set connection service profile
Size, Profile Buffer

Call Parameters Description

ite_data_read Path ID, Buffer, Size Read data

ite_data_write Path ID, Buffer, Size Write data

ite_data_avail_asgn Path ID, Notify_type Request notification when
data available to be read

ite_data_avail_rmv Path ID Remove data available request

ite_data_ready Path ID, Data Count Return number of bytes data
available to be read

ite_data_readmbuf Path ID, mbuf container Zero copy read API call

ite_data_writembuf Path ID, mbuf container Zero copy write API call

Using the Application Environment
Below is an example of a stack consisting of an ISDN driver, LAP-D data link layer,
and Q.931 network layer.

There are three ways the application can invoke this configuration:

Explicitly, 1 call
ite_path_open(“/isdn0/lapd/q931”, READ | WRITE, &pathID, NULL);

Explicitly, 3 calls
ite_path_open(“/isdn0”, READ | WRITE, &pathID, NULL);
ite_path_push(pathID, “/lapd”);
ite_path_push(pathID, “/q931”);

Implicitly
ite_path_open(“/network”, READ | WRITE, &pathID, NULL);

In this case, the isdn0 descriptor is configured to contain an implicit push of the /lapd/q931 stack. This
descriptor is then named /network. In this manner, the application simply opens /network. New
descriptors containing different protocol stacks can be loaded into the OS-9 system. This method
enables the application to run over different network topologies without disruption. Addressing can be
defined by using the ‘#’ delimiter when opening each layer. Using the ISDN example above, spisdn uses
D channel, splapd uses TEI/SAPI {00}, and spq931 uses 515-223-8000 for their respective addresses.
The open call would look like:

ite_path_open(“/isdn0#D/lapd#00/q931#5152238000”, READ|WRITE, &pathID, NULL);

PAGE 7

Call Parameters Description

ite_fehangup_asgn Path ID, Local Addr_type, Notify on far-end hang up
Remote Addr_type

ite_fehangup_rmv Path ID, Device_type Remove FE hang up notification

ite_linkdown_asgn Path ID, Local Addr_type, Notify on link down
Remote Addr_type, Notify_type

ite_linkdown_rmv Path ID Remove link down notification

ite_linkup_asgn Path ID, Notify_type Notify on link up

ite_linkup_rmv Path ID Remove link up notification

Asynchronous notification calls –
Far-end hang up and protocol stack status
change can also be registered by the
application in addition to the asynchro-
nous calls defined by the previous sections.
The facility also allows layer-specific
notifications, if required.

Application

q931 Path

D channel
B channels

lapd

isdn0

spq931

spq931

spq931

Device
Descriptors

Device
Drivers

Developers must define the following to write an application for Microware’s Soft Stax :
• Design goals
• Driver architecture
• Optimized driver services
• Data and control flow through the architecture

Design goals
SoftStax defines the communications
software framework. Microware pro-
vides the optimal software baseline
that provides a simple and under-
standable application environment
with the ability to snap in and out
underlying network technologies
without disturbing the application.

Optimal software baseline
The Core SoftStax environment is
20Kb RAM and 25Kb ROM for all processor architectures. The architecture was not designed for portability
across operating systems. Microware’s solution is a kernel extension that utilizes services unique to OS-9 to
provide a run-time communications architecture that maximizes performance and minimizes footprint
andCPU utilization.

Open architecture — Microware’s SoftStax is completely documented and specified to allow all
third-party protocol stack companies, hardware driver providers, and SoftStax users to efficiently implement
their technologies for OS-9.

Protocol stack and layer interoperability – SoftStax provides one universal framework for every
protocol layer. This enables protocols implemented by multiple parties to be interoperable.

Simple protocol stack development
SoftStax provides an easy to learn and use
framework that includes a protocol layer tem-
plate driver, network emulation driver, timer
services, and buffer management services. The
template driver provides a “null layer” imple-
mentation to which a protocol state machine
can be immediately added. The network emu-
lation driver enables validation of protocol
stacks without requiring access to the net-
work. Timer services and buffer management
services are also provided.

Easy understanding of protocol stack add-ons – Communications software development
requires integration of an RTOS, application, one or more protocol stacks, and device drivers, all written to
different frameworks. Microware’s SoftStax enables developers to immediately understand a common baseline
regardless of the Microware networking solutions product add-on.

Effective debugging of real-time problems – Microware’s networking solution provides a
facility for tracing the events leading up to real-time bugs. This facility is provided through a
debugging library for real-time execution capture.

PAGE 8

PROTOCOL STACK FRAMEWORK

“Microware’s SoftStax networking solution reduced the risk to
our project by providing an integrated communications
framework, excellent training, and quality support through-
out the project. It also enabled us to build a high perform-
ance IP over ATM multimedia service network with a lower
memory footprint.”

Derek Noble
Product Development Manager
Nortel

“Its universal framework enabled our technologists to
complete Universal Serial Bus development for Microware
in just four weeks. Microware’s networking solution is an
easy and efficient solution for implementing Universal
Serial Bus protocol technology for OS-9.”
Thierry Giron
Director of Engineering
Award Software International

Protocol stacks available in source and binary form
Providing protocol stack binaries eliminates development effort spent
porting the protocol stack to a particular RTOS environment. Having
access to source code enables control over the implementation.

Driver Architecture

Protocol driver data structures – The OS-9 kernel provides automatic alloca-
tion and initialization of data structures for a driver. This service is used by SoftStax to
allocate and initialize data areas for protocol drivers without requiring creation of code to
allocate and initialize data areas. OS-9 automatically creates four data structures for a
driver, including the following:

• Device entry
• Driver storage
• Logical unit storage
• Path descriptor

A library is also provided to create a per path data structure for the
driver, called the per path storage.

PAGE 9

“Microware’s networking solution simplifies complex communications
equipment problems. The off-the-shelf Communications Paks eliminate
wasted effort of porting protocol stacks, enabling us to begin
application development quickly. The technical support we
were given was excellent. Microware provided timely and
knowledgeable answers and experience to the project.”
Sharon Harris
Software Design Engineer
PowerSys

One per every path
using the driver

Per-interface
data area

Maps to
PathID

Cornerstone data
structure for each
driver invocation

Global Driver
data area

Path Descriptor

Per Path Storage Driver StorageLogical Unit Storage

Device Entry

Plug-In Capabilites:
BSD v4.4 TCP/UDP/IP

ISDN (Q931, Q921)

X.25 (X.25, LAP-B)

SNMP

ATM Signaling

IPoA

USB Host/Peripheral

Voice Over IP

Web/HTTP server

SMTP/POP3 e-mail client

Web Browsers (Java and Native)

IEEE 1394

PAGE 10

All ITEM API calls are realized at the driver layer as DrGetstat
and DrSetstat calls. Parameter blocks are formatted with the
ITEM service request and associated parameters. For device
drivers, the DrUpdata entry point is not used, and an interrupt
service routine, which can be considered as the incoming data
entry point for a device driver, is implemented.

Inter-driver communication primitives are implemented not as
inter-process communication, but as direct jumps to the entry
point of the driver above and below. This aspect is the key to a
high performance system.

The DR_FMCALLUP_PKT macro minimizes the amount of
time spent in an interrupt service routine by queuing the data
on a receive queue for processing by the receive process.

Entry Point Parameters Description

dr_iniz Device entry Initialize protocol state
machine/HW

dr_term Device entry De-initialize protocol
state machine/HW

dr_getstat Device entry, param blk Retrieve control information

dr_setstat Device entry, param blk Set control information

dr_updata Device entry, buffer Incoming PDU for processing
(going up)

dr_downdata Device entry, buffer Downgoing PDU
for encapsulation

Entry points of a protocol driver:

Macro Call Parameters Description

SMCALL_UPDATA Device entry, drvr above Pass PDU up
device entry, buffer

SMCALL_DNDATA Device entry, drvr below Pass PDU down
device entry, buffer

SMCALL_GS Device entry, adjacent drvr Pass control request up/down
device entry, param blk

SMCALL_SS Device entry, adjacent drvr Pass control request up/down
device entry, param blk

Inter-driver
communication primitives:

Macro Call Parameters Description

DR_FMCALLUP_PKT Device entry, drvr above Queue packet for incoming
device entry, buffer data processing

Optimized Driver Services
Some of the issues that have a negative effect on protocol processing performance include:

• Copying data packets during transmission and reception
• Data container facility
• Timer services

Eliminating copies – Microware’s networking solution has facilities to
eliminate data copying for three common scenarios:

• Application reads
• Data packet storage for retransmission
• Moving or shifting data for data encapsulation

The ITEM API provides read and write mbuf calls that provide what the
industry calls zero copy facilities for application reading. The Microware
environment also provides other “zero copy” facilities.

1. Microware’s networking solution provides the SPF_NOFREE facility,
enabling protocol drivers to keep a pointer to a single data container while pass-
ing the same buffer down for transmission instead of making a copy.

2. Microware’s networking solution uses the SPF_GS_UPDATE facility to collect
protocol stack header and trailer requirements when the stack is created or modified.

This ensures that there is reserved space for headers and trailers in the data container,
eliminating the extra copy or data shifting to make room for headers and trailers by each layer.

Buffer management services – Microware’s networking provides a buffer management sys-
tem called mbufs. The mbuf facility is an industry standard mechanism to provide a high-perform-
ance data container allocation mechanism for protocol data units (PDUs).

PAGE 11

PAGE 12

FEATURES AND BENEFITS TABLE

Feature Benefit

Microware’s Networking Application Environment

Network independent API Applications portable across
network topologies

3 data structure abstractions Network independent applications

Based on telephone paradigm Easy to learn and use

Network specific APIs w/add-ons Detailed network service access available

Sync & async data reads/writes Smaller code, simplifies
application development

Byte or packet oriented reading Smaller code, simplifies
application development

Zero copy through mbuf High performance
read/write calls

Dynamic protocol layer Flexible application development
pushing/popping

‘#’ delimiter Smaller code, simplifies
application development

Networking Components

File manager extension to OS-9 Maximum performance, minimum
footprint & CPU utilization

Application examples Simple & understandable
application development

Protocol driver template (spproto) Ensures layer interoperability,
less development effort

Network emulation driver (sploop) Efficient application & protocol testing

HDLC driver sources & binaries Less development effort

25 kilobyte footprint framework Small footprint, modularly scaleable

Protocol stack add-ons Eliminates porting effort while
in source & binary enabling source modifications

Network Oriented OS-9 Properties

Process model RTOS Secure, resistant to attack

Re-entrant, position independent Simple application development

Dynamic download & upgrade 100% availability even during maintenance

OS-9 alarms High resolution timer service

Structure auto-allocation Smaller code, less development
& initialization

Inter-driver communication macros High performance

DR_FMCALLUP_PKT macro Minimizes time spent in interrupt context

SPF_NOFREE “-1 copy” High performance
protocol stack operation

SPF_GS_UPDATE “-2 copy” High performance
protocol operation

Mbuf buffer management Industry standard, high performance,
less development effort

Timer services High performance, less development effort

PAGE 13

TECHNICAL SUMMARY

Facilities

*RAM sizes are estimates based on a single application’s access to the I/O system.
**Memory pool for buffer management minimum recommended size. This number

is user configurable to any size.
— Information not available at time of publishing.

68K PowerPC StrongARM X86 SH
/ARM

ROM RAM* ROM RAM* ROM RAM* ROM RAM* ROM RAM*

OS-9 kernel 27652 32K 80008 64K 84232 64K 60912 64K 72064 64K

SoftStax 18156 20K 22680 20K 21928 20K 17080 20K 18808 20K
networking solution

Mbuf management system 2444 64K ** 6728 128K** 6056 128K** 4000 128K** 5096 128K**

Template protocol 3444 2K 4832 2K 4424 2K 2896 2K 3456 2K

Network emulation 5784 3K 10184 3K 9480 3K 6944 3K 8220 3K

Serial console support 4010 8K 27080 20K 28336 20K 18004 20K 22632 20K

Floppy/hard drive support 10940 10K 44144 26K 53456 26K 34624 26K 60166 26K

IP stack Ethernet support 88772 20K 170K 20K 176K 20K 148K 20K 178K 20K

PPP/SLIP 82272 30K 99K 30K 142K 30K 100K 30K 113K 30K

Network File System client — — — — — — — — — —

Network File System server — — — — — — — — — —

System
Requirements

PAGE 14

Documentation
Documentation is provided in PDF format and is tutorial style for easier understanding of the
product. The Microware networking solutions manual set includes:

• Getting Started Manual
• Programming Reference Manual
• Using SoftStax Manual (Microware’s Networking Solution)
• Porting Guide

The Getting Started Manual explains the installation and initial configuration of the environ-
ment. The Programming Reference Manual provides syntax and semantics for all ITEM API
calls. The Using SoftStax Manual provides information for the application developer. The
Porting Guide targets the protocol stack or device driver developer.

The key to Microware’s SoftStax networking solution is an optimal software baseline that pro-
vides a simple and understandable application environment with the ability to
“snap in and out” underlying network technologies as they evolve, without disturbing the
application. Microware’s SoftStax enables developers to increase productivity and
profitability while significantly differentiating their product in the market.

CONCLUSION

technical

white
paper

1044-0022 06-13-00

M i c r o w a r e ’ s S o f t S t a x ™

N e t w o r k i n g S o l u t i o n

SoftStax™

CORPORATE OFFICE INTERNATIONAL OFFICES

Microware, the Microware logo and OS-9 are registered
trademarks of Microware Systems Corporation. All other
brands or product names are trademarks or registered trade-
marks of their respective holders. ©Copyright 2001
Microware Systems Corporation. All Rights Reserved.

NORTH AMERICA
Microware Systems Corporation
1500 N.W. 118th Street
Des Moines, IA 50325 USA
Tel: (515) 223-8000
Sales: (888) 642-7609
Toll-free: (800) 475-9000
Fax: (515) 224-1352
E-mail: info@microware.com
WWW: www.microware.com

JAPAN
Microware Systems K.K.
5-2, Sotokanda 3-Chome
Chiyoda-Ku
Tokyo 101-002, Japan
Tel: +81 3-3257-9000
Fax: +81 3-3257-9200
E-mail: info@microware.co.jp
WWW: www.microware.com/japan

Osaka Office
4F Yotsuhashi Okawa Bldg.
1-6-23 Shinmachi
Nishi-Ku
Osaka 550-0013, Japan
Tel: +81 6-6535-6557
Fax: +81 6-6535-6558
E-mail: info@microware.co.jp

EUROPE AND ELSEWHERE:

France
(Southern Europe & Middle East)
Microware Systems France
LP 908 - Les Conquerants
1 Avenue de l'Atlantique
ZA de Courtaboeuf
F- 91976 LES ULIS cedex
France
Tel: +33 (0)1 60 92 36 70
Fax: +33 (0)1 60 92 36 79
E-mail: info@microware.fr

Germany
(Central & Eastern Europe)
Microware Systems Corporation
Haringstrasse 19
D-85635 Hoehenkirchen
Germany
Tel: +49 8102 7422 0
Fax: +49 8102 7422 99
E-mail: info@microware.de

United Kingdom
(Northern Europe & Far East)
Microware Systems Ltd.
1 Holly Court
3 Tring Road
Wendover
Buckinghamshire
HP22 6PE
United Kingdom
Tel: +44 (0)1296 628100
Fax: +44 (0)1296 628117
E-mail: info@microware.co.uk

The Netherlands
(Belgium, Luxembourg, and
Scandinavia)
Microware Systems B.V.
Jan Ligtharstraat 1
1817MR Alkmaar
The Netherlands
Tel: +31 72 - 5143 510
Fax: +31 72 - 5143 512
E-mail: info@microware.co.uk

