ISDN

- ntegrated Ι S ervices igital D etwork N
- Principles and Basics
- Reference Points, Interfaces, Services
- Protocol Architecture
- Applications
 - LAN LAN Connections
 - PPP, Dial In (Remote Access)
 - Videoconferencing

ISDN Principles

Defined by ITU-TS (I.120, 1994)

- Voice and non voice applications using a limited set of standardized facilities, interfaces and standards
- Support for switched and non switched applications
 - Circuit switching
 - Packet switching
 - Leased lines
- Fundamental building block (today) is a 64 kbps connection
- Layered protocol architecture

Circuit vs. Packet Switching

Circuit Switching

- Connection means a physical communications channel
- Exclusivly used by the two subscribers for call-duration
- Example PSTN
- Fixed data rate
- "Bit pipe", no error- or flow control
- Connection setup time
 - Analog, Digital

Packet switching

- All data is segmented into packets
- Packet store and foreward
- End Systems may operate at different data rates
- Sophisticated error and flow control procedures applied on each link.

Evolution, not Revolution

- POT (Plain Old Telephone) network
 - Concept: Network for voice transport
 - Structure: Strict hierarchy
 - Several specialized networks (i.e. X.25), separated from telephone network
- ISDN
 - involves digitization of the telephone network (-> not a pure telephony network any more)
 - Evolution from the POT because of advantages for carriers
 - Transition of one (or more) decades
 - Use of existing networks (i.e. "the last mile")
 - Connections at other rates than 64kbps

ISDN for the Carrier

- Analog transmission of voice
 - More noise
 - More expensive equipment
- First step: Introducing digital transmission (starting in the 60ties)
- Second: Introducing digital exchanges (starting late 70ties)
- Integration of transmission and exchange

Reference Points / User Access

- Interface Standards
 - Group functions on user premises
 - Define Reference points
- TE1: Equipment with standard ISDN-Interface (ISDN-Telephone, Computer with ISDN Interface)
- TE2: Non-ISDN equipment (i.e. Modem with V.24 interface at R)
- TA: Terminal adapter
- S0
 - 4 wire bus, up to 8 devices, up to 2 active at the same time.

Customer Premises

S-Interface

- The standard ISDN-interface is the S-interface
- Configuration
 Point to point
 - Point to multipoint (passive bus)
 - Point to multipoint (extended bus)

User Interface

- Basic rate Interface S0
 - 2*B (64kbps) + D (16kbps) +
 synchronizing and framing =
 192kbps
- Primary Rate Interface S2M
 - 2.048 (1.544) Mbps
 30 (23) *B (64kbps)
 - 1 (1) *D (64kbps)
- Channel functions
 - B: Digital voice (PCM)
 - User Data ("transparent pipe")
 - D: Signalling (EDSS1, propri.)
 - Low speed data (packet sw.)
 - Telemetry

Integrated Services

- Services
 - Voice transmission
 - Transparent data transmission
 - Facsimile Group 4 (not compatible to Group 3)
 - Teletex
 - Packet switched services
- No "upper layer" services like mail, databases or fax Group 3/4 gateways
- Provided at a standardized usernetwork interface

Protocol Architecture

- B- and D-channels are multiplexed over the same physical interface
- D-channel,
 - signalling (call control)
 - LAPD, based on HDLC
- B-channel
 - Circuit switched, setup on demand
 - Transparent data pipe, layer
 2-7 not spec. Compatibility?
 - Most important for Data communication: IP over PPP over ISDN

Application						
Presenatation	End-to-end user signaling					
Session						
Transport						
Network	Call control I.451/Q.931	X.25 packet level	(Further study)			
Data Link	LAPD(I.441/Q.921)					
Physical	I.430 basic interface + I.431 primary interface					
	Signal	Packet	Tele- metry	Circuit switched	Semi- permanent	Packet switched
	D channel			B channel		

Physical Layer Frame Format

- Format differs depending on direction (outbound (terminal to network) inbound (net to terminal))
- Frame length 48 bits (with 36 bits of data)
- Mechanism to avoid collisions
- Multiplexing of B1, B2 and Dchannel data

1 1 8 1 1 1 1 1 8 ... Field Length (bits)

FLB1LDLFLB2LDLB1LDLB2LDL

TE frame (terminal to network)

FLB1EDAFFB2EDSB1EDSB2EDL

NT frame (network to terminal)

- F framing bit (provides sync.)
- B1: B1 channel bits (user data)
- B2: B2 channel bits (user data)
- D: D channel bits (signalling)
- L: Load balancing
- E: Echo of previous D-bit
- A: Activation bit
- S: Spare bit Computer Center, University of Ulm

Data Link Layer (for ISDN Signalling)

- LAPD: Link Acces Procedure, D-Channel
- similar to HDLC (High Level Data Link Control)
- TEI: Terminal Endpoint Identifier - layer 2 address of a single Terminal (all ones: broadcast)

Network Layer (for Signalling)

- ITU-T Q.930 and ITU-T Q.931
- in Europe: EDSS1
- Protocol to control connections:
 - call establishment
 - call termination
 - information(i.e. numbers, charging)
- Proprietary variants by vendors (i.e. Cornet, Siemens)

ISDN based Applications

- FAX group 4
- (Euro) Filetransfer

- Shops
- IP Transport
- Electronic banking
- Videoconferencing

ISDN and Data Communication: PPP

- Question: How to transport IP-Packets over ISDN ?
 - Remember: user data: B-channel, transparent pipe, just layer 1 defined
- Protocol Stack for B-Channel needed !
- Most common solution: IP over PPP over ISDN
- Point to Point Protocol
 - standard internet encapsulation protocol for serial links
 - LCP (Link Control Protocol): establish, configure, test data link connection
 - PAP (Password Authentication Protocol)
 - NCP (Network Control Protocol), supporting IP, IPX, Decnet

LAN-LAN Connection

ISDN / Remote Access

remote access dial in user server (authentication)

- user- administration
 - RADIUS -Server
- security
 - PAP, CLI (calling line identification by ISDN network), Callback
- dynamic assignment of IP-address
- performance
 - 64 kbps
 - + channel bundling
 - + compression
- standard internet application software

ISDN Videoconferencing

- H.320 Standard
 - general Standard, ensuring compatibility
 - contains other standards for special tasks
 - i.e. H.261 Video Compression
- Bandwidth
 - 64 kbps possible
 - 128 kbps quite good
 - 384 kbps business grade quality

References

William Stallings: Data and Computer Communications (Macmillan Publishing)

Tutorial: Internetworking Technology Overview www.cisco.com/univercd/cc/td/doc/cisintwk/ito_doc/index.htm

Requests for Comments:

- RFC 1661: The Point to Point Protocol (PPP) updated by RFC 2153
- RFC 1662: PPP in HDLC Framing
- RFC 1618: PPP over ISDN

Source for RFCs: http://andrew2.andrew.cmu.edu/rfc/rfc-front.html