

1

CISC452-00W **CISC452-00W** Telecommunications Systems

Lesson 2 Residential Broadband

Slides courtesy Cisco Systems

Like dial, cable, wireless, and T1, DSL is a **Transmission Technology**, NOT a full end-to-end solution

Users don't "buy" DSL, they "buy" services, such as high-speed Internet, leased line, VPN, and Video on Demand

DSL Service	Max. Data Rate Down/Uplink (bps)	Line Coding Technology	Analog Voice Support	Max. Reach (km-feet)	
VDSL– Very High Bit Rate DSL	25M/1.6M or 8M/8M	???	Yes	.9–3,000	Residential
ADSL–Asymmetric DSL	8M/1M	CAP & DMT	Yes	5.5–18,000	
IDSL-ISDN DSL	144K/144K	2B1Q	No	5.5–18,000	SOHO
SDSL–Symmetric DSL	768K/768K	2B1Q / CAP	No	6.9–22,000	30110
HDSL2– High Bit Rate DSL	1.5M–2.0M/ 1.5M–2.0M	Optis	No	4.6–15,000	Business

Trade-off is Reach vs. Bandwidth

Reach numbers imply "Clean Copper"

Different layer 1 transmission technologies, need a common upper protocol layer to tie them together

Mass deployment technology
Good Reach
Preserves Baseband POTS
Rate adjusts to local loop conditions
Good Spectral Compatibility
Competing line code variations - CAP, DMT, G.Lite

Carrierless Amplitude and Phase

- ANSI T1.413 Standard for ADSL
- **Multiple Suppliers**
- Utilizes QAM line code within many multiplexed bands or "tones"
- Rate adapts by changing or zeroing-out bits/tone

- Sub-rate (<1.5Mbps), splitterless, consumeroriented standard
- Promoted by UAWG (Intel, Microsoft, Compaq)
- Based on DMT standard (lower 128 tones)
- Should interoperate with "full-rate" DMT (g.hs used to signal at startup)
- Targeted for 1H 1999

Frequency Spectrum Utilization

Downstream power is highest at the DSLAM and lowest at the CPE.

Upstream power is lowest at the DSLAM and highest at the CPE.

If these signals are in different frequency spectrums then they will not crosstalk, otherwise there will be interference from one signal to the other.

Downstream power is highest at the DSLAM and lowest at the CPE.

Upstream power is lowest at the DSLAM and highest at the CPE.

If these signals are in different frequency spectrums then they will not crosstalk, otherwise there will be interference from one signal to the other.

Multiple connection multiplexing Built in QoS / CoS for newer services

Legacy CPE requires that the access link use HDLC or Frame links.

ITU-C on DSLAM will interwork from Frame to ATM

ATU-C: ADSL Transmission Unit, Central

The ADSL point of termination in the central office

An ADSL modem

ATU-R: ADSL Transmission Unit, Remote

The remote user's ADSL modem

The CPE

DSLAM: DSL Access Multiplexer

Central office device that concentrates many ADSL connections into one

DSLAM contains ATU-Cs

ADSL—Data Bypass

Copper Loop

"Classic" VPN ATM-to-ATM Solution

Protocol Transparency

VC between CPE router and ISP central router Multiple QoS classes and guaranteed levels of QoS

IP services mapped over **ATM**

PPP over ATM over ADSL with L2TP Tunnel

Essential operational functions can be delivered using well established features in PPP/L2TP, such as:

Authentication (PAP, CHAP, etc.)

Address Administration done at the service provider gateway

Layer 3 autoconfig (DHCP, DNS, etc.)

Dynamic Selection of Multiple Destinations (via multiple PPP Sessions)

Encryption

Generic xDSL Implementation

An Access Solution: Connects Remote User to Central Office as a Dedicated Circuit

Advantages

- Date rate
- Uses in-place copper loops
- POTS on same line
- Reduces load on C.O. switch
- Emerging as the standard

Disadvantages

- Expensive modems, today
- Speed/distance trade-off

The ADSL Reference Model

- DMT modems and a dumb DSLAM
- Ethernet or ATM25 to the desktop
- Cells to the CPE
- Cells to the backhaul network
- 1577 IP over ATM

Connectivity, ADSL

- Bridged Ethernet to the desktop
- 1483 encapsulation
- One PVC per user to the backhaul network

Connectivity, ADSL

Advantages

- Proven technology
- Uses in-place copper loops
- Reduces load on C.O. switch

Disadvantages

- Two MB maximum data rate
- POTS requires second line
- Few vendor choices

Advantages

- Enormous data rate
- Uses in-place copper loops
- Avoids C.O. switch

Disadvantages

- No standards
- Limited ongoing development
- Unavailable
- Short distance limit

Connection Variables

- Network service definition has significant effect on data connection
 - How many destinations? 1 or N?
 - Simple connectivity or value-added service?
 - Cells to the user or frames?
 - Flat-rate billing or usage based?

Building End-to-End Networks and Services

The Future for xDSL

How many systems will be upgraded to DSL for POTS service?

How many Loops qualify?

How popular will competing technologies become?

How will ISP's price higher Internet services?

Is there a market for access networks that can provide multiple services?

Cable Network Pre World War II

The concept of television is born!

Competing and divergent views on implementation methods promoted by several sources Cable Network Post World War II **Television becomes a reality! Television transmitters** established: **Limited content** Few broadcast sources Limited urban coverage, or near rural transmitters

Limited content

Excellent to Poor Picture Quality Reception

Cable Network Introduction of the Community Antenna! Makes video available to many Improves signal quality **Extended coverage** through amplification Amplification has range limitations because of excessive noise

CATV as we know it is born:

One way broadcast signal distribution Signal amplification over coaxial cable Amplifiers powered through coaxial cable plant Range limitation because of noise build up

But!

Limited content:

Current affairs and panel discussions

Little entertainment

Reduced broadcast hours

Few broadcast/content sources

Frequent outages

Cable networking advances

Microwave + The Community Antenna

Microwave Broadens the Distribution Range of Quality Video Reception to a Larger Subscriber Population

Cable Networking Standards Evolve:

Based on available vendor product and cost:

Diameter and quality of Coaxial Cable

Bandwidth specification on amplifiers

Power distribution products

Set Top devices

Standards primarily defined channel capacity:

Initially 16 channels, followed by:

32 channel systems

64 channel systems

Limited quality control, faults often identified by customer call

Limited Content and Signal Sources Available:

Content sourced from:

Local "OFF AIR" pickup

Remote "OFF AIR" pickup with microwave back haul

Film and tape

Emerging local content as mandated by FRANCHISE terms:

Local affairs, educational etc....

Consequently:

16 or 32 channel systems are considered adequate

Systems were "LOCAL", limited to regional FRANCHISE

"Owned and Operated" by local entrepreneur

Satellite transmission emerges:

New content becomes available

National coverage by a single source is now possible

A national market develops for content producers

A "CORNUCOPIA" of content offered to the market

Resulting in:

New customer demand for content (HBO, CNN, ESPN, International)

New marketing concepts e.g., "Pay Per View", "Premium channels"

Market DEMAND compels CATV operators to:

Increase system capacity

Improve service quality

Invest heavily in their networks, or "Cash In" and sell out to stronger players...

The MSO Emerges

Cable Network Growth Caused By Increased Traffic, Content and Market Demand

Results in:

Industry consolidation

Expansion of MSO holdings

TCI14 M basic subscribersTIME WARNER CABLE7 M basic subscribersMEDIA ONE5 M basic subscribers

System clustering (property exchanges)

Cable Network Upgrading the Cable Network:

To meet customer service expectations

To increase capacity

Defend against loss of market share

To support new services and revenue growth

Upgrading the Cable Network:

Introduce Fiber Optics technology to the network

Improve signal quality

Reduce maintenance effort and cost

Remove bandwidth constraints

Reduce operating cost

Reduce the number of failure elements

HFC (Hybrid Fiber Coax) Is the Result !

Bypass and eliminate coaxial cable and amplifiers from a portion of the downstream path and replace the link with fiber

Make ready for two way operation!

Typically Fewer than Five Amplifiers in Cascade

The video signal is transmitted over fiber to the node, where it is converted to an electrical signal and forwarded to the subscriber over existing coaxial cable

Provision is made to support return traffic for future services

Smaller, robust serving areas:

Increased bandwidth:

Downstream "rebuilds" to 750 MHz

Wide band amplifiers etc...

Two way operation:

Upstream (5–42 MHz) "Provisioned" and "Operational"

An Advanced Services Platform Based on "DOCSIS" (Data Over Cable Services Interface Specifications) enables High Speed Data over Cable

Cisco Universal Broadband Router uBR 7246

Cable Network DOCSIS Standard Data Platform Offers:

Possible service applications:

- Internet access
- Enterprise
- Telecommute
- Virtual private network
- Voice
- SOHO

Cable Network Offers New Service Possibilities

Upgraded Cable Plant

Cable plants are upgraded for:

More reliable topology

Increased bandwidth/smaller serving areas

Increased availability

More reliable signal

Advanced network management

Two way operation

Advanced services

Cable Data Standards

MCNS

A. Industry-developed spec

B. Inexpensive implementation

C. Already successful in the marketplace

IEEE 802.14: wait and see...

Network Services Solutions

Services

Analog broadcast video Digital broadcast video

Existing Services

Internet access: Web, e-mail New Services IP-based services Voice H.323 Webcast video

Webcast Video Lower-bandwidth video over IP Video on demand Video conferencing and collaborative applications Radio/music Push services

Personalized video and data

Application Opportunities

Video As Data: Bandwidth

Assume 100 video channels

Assume 5 Mbps each

Total bandwidth only 500 Mbps

Less than one OC-12!

High end routers and switches have a dozen or more OC-12 ports

Backbone Structure

Separate Infrastructures

Benefits Uses existing equipment Problems Duplicate networks Costly Unwieldy, complex Video is not networked, only point-to-point links

IP Transport Infrastructure

Benefits

Unified network infrastructure IP brings scale and security IP is ubiquitous QoS w/ RSVP, L3 services Lower cost of ownership Leverage the Internet growth Applications/content/services Cost/performance curve Interoperability

Problems

Backbone-class devices only emerging now SONET integration New IP-based telephony

Retains current digital video transmission

Simple broadcast It works and it's cheap

Uses IP transport for:

Switched video

Two-way video

Complex routes: studios, post production, ad houses, local sources

Digital Video Transport + SONET++ Ring

Access Network: HFC

Analog video on RF

Digital video

MPEG/64QAM

Voice, Web, webcast video

IP/MCNS/64QAM

Typical Bandwidth per Data User

Assumptions:

50% of homes passed are subscribers

10% of subscribers are active

One downstream at 64-QAM per 4 fiber nodes

One upstream at 2560 Mbps per fiber node

HP Per Node	HP Per Downstream	Peak Data Rate (D/U)	Average Data Rate (D/U)
500	2000	27 Mbps/ 4 Mbps	270 Kbps/ 102 Kbps
1000	4000	27 Mbps/ 4 Mbps	135 Kbps/ 51 Kbps

Typical Cost at Head End/Hub Is \$5/Home Passed More Bandwidth is Available with More HE Gear

