Broadband Wireless Association

Wireless and Other Broadband Delivery Techniques

Tutorial for IBC2001 Leader - Stephen Lowe - Chairman BWA

Why at a Broadcasting Conference?

- Television is going to digital interactive
- Internet is going to streaming video

Is there a difference?

Or are they just mirror images of each other?

Agenda for the morning

- History
- Broadband
- Access
- Services
- Technology
- Regulation
- Standards
- Business Plan
- Planning wireless -
- The IBC

- How we got to now
- What does that mean?
 - Where it fits in the delivery chain
 - What will generate revenue
 - The access network options
 - Who has a piece of the pie
 - Where are they?
 - Is there a viable one?
 - The process
 - What's in the halls
- At 12.00 noon we will observe a 3 minute silence

Just so we are clear from the start

- People
- Can't
- Memorise
- Complicated
- Industry
- Acronyms

How 'always-on' access changes use

	Home with dial up Access	Home with broadband access	Note
Time on-line (min/day)	84 min	134 min	+60%
Time watching TV	33%	24%	
Time listening to Radio	28%	21%	
Time accessing the net	11%	21%	close to TV
Streaming audio dw I.	30%	43%	

Source: 2000 - Arbitron & Coleman "US survey for Nat. Assoc. Of Broadcasters"

How we got to now

Convergence – The gentle way

ringing W ireless A live

Entertainment product growth

ringing W ireless A live

Evolution of wireless systems

- Wireless Local Loop

 WLL
- Local Multipoint Delivery System
 - LMDS

- Multipoint Video
 Distribution System
 MVDS
- Broadband Fixed Wireless Access
 - BFWA

Broadband – Today's definition

ringing W ireless A live

History of Wireless Local Loop

- Oth generation POTS only let down by expensive CPE's & low revenue from residential POTS
- 1st generation start of IP play and higher data rates

let down by lack of QoS and limited other services

 2nd generation - voice + data + full QoS + high data rates

Wireless Local Loop evolution

DWa

Produ Gener	ct & ation	CPE cost	Services	CPE data rates (max)	QoS	non LOS capability
1994	0th generation e.g. lonica UK, 3.5 GHz	sub \$1000	POTS	96 kb/s i.e. 32 kb/s voice + 64 kb/s modem	wireline voice	LOS only
1998	1st generation e.g. AB Access US, 5.7 GHz	sub \$1000	IP, ATM	13 Mb/s	best effort IP (UBR)	limited by poor multi-path tolerance
2001	2nd generation e.g. VectaStar EU, 3.5 GHz	sub \$1000	IP, ATM, E1/T1, POTS, VoIP, VoATM	60 Mb/s	full ATM QoS (CBR, VBR, UBR)	robust non LOS capability

CPE = Customer Premise Equipment

LOS = Line Of Sight

ringing W ireless A live

Access Where does it start?

CATV HFC Network

The services

People expect more

ringing W ireless A live

Adoption Curves for Various Media

The Internet became a new Medium in Record Time

Data are for US media adoption; *data are estimates

ringing W ireless A live

Service need for symmetry

Upstream Bit Rate

Residential Traffic Symmetry

Bandwidth needs of one person

ringing W ireless A live

SME Traffic Symmetry

ringing W ireless A live

The business user – SME's

- An SME has between 5 500 employees
- Nearly infinite variety of needs. Overall estimated bit rate requirements:

Corporate Traffic Symmetry

- Voice
- Data
- Web access
- Web hosting
- Home workers paid for by HQ

Service parameters – a customer view

ringing W ireless A live

Broadband Data rate offers

- Confirmed / Guaranteed Information Rate
 - Determines network capacity requirements
 - Operator sets tariffs to control demand
 - Typically between 128 kbps and 2 Mbps
- Variable Information Rate
 - Allows users to configure service on demand
 - A data service parameter
- Burst / Peak Information Rate
 - Makes revenue from spare capacity
 - Will degrade as penetration rises
 - Typically up to 34 Mbps symmetrical
- On demand / User defined
 - Reduces operator work load
 - Raises revenue opportunities

The technologies

Broadband Access Options

ringing W ireless A live

Broadband access technologies

Source: Telenor

ringing W ireless A live

DWa

Broadband Access (W Europe)

Cable and DSL

- Cable modems and ADSL models clearly provide significant competition to fixed wireless
 - broadly we could expect operators with twisted pair networks to deploy ADSL, those with cable networks to deploy cable modems and those with nothing to deploy wireless
- But it's not that simple
 - cable reach is not 100% so many cable operators envisage fixed wireless as a way to extend their reach
 - ADSL coverage is also variable at perhaps 50% 70%
 - although the modems themselves may only be \$100 \$200, significant network upgrade is often require to implement high speed two way wired networks
 - wireless is generally competitive already and costs are falling

Cable data systems for BFWA

- Two Cable-Modem Consortium are providing standard equipment and technology for the European market:
- MCNS-DOCSIS: US developed Multimedia Cable-Network System, Data Over Cable System Interface Specification, including for Europe:
 - 3Com, Dassault, Pace,
 Broadcom, General Instrument, Thomson
 Cisco, Motorola,
- DVB/DAVIC: Digital Video Broadcasting / Digital Visual Audio Council Interoperability Consortium, including:
 - Alcatel, Hughes Ntwk S.,
 - Cocom/CPS, Nokia,
 - DiviCom, Sagem,

Simac, Thomson Broad. S. Thomson Multimedia

An HFC Network Frequency Allocation

Cable Modems

A residential or consumer product

Self install but operator configured

Asymmetrical speed – suitable for surfing – less good for business PipeRider[™] Enhanced Security Cable Modem HM204c HM205c

Technical Specification

ERICSSON 🔰

PipeRider[™] HM204c DOCSIS Version

System requirements For Ethernet Interface: 5-42 MHz

Bandwidth

Downstream 6 MHz USA cable channel spacing Upstream 200/400/800/1600/3200 kHz

Bit rate (raw)

Downstream 25 Mbps (64-QAM), 43 Mbps (256-QAM) Upstream 0.32-5.12 Mbps (QPSK), 0.64-10.24 Mbps (16-QAM) PipeRider[™] HM205c Euro-DOCSIS Version

System requirements For Ethernet Interface: 5-65 MHz

Bandwidth

Downstream 8 MHz Europe cable channel spacing Upstream 200/400/800/1600/3200 kHz

Bit rate (raw)

Downstream 41.7 Mbps (64-QAM), 55.6 Mbps (256-QAM) Upstream 0.32-5.12 Mbps (QPSK), 0.64-10.24 Mbps (16-QAM)

Euro DOCSIS parameters

- 860 MHz Network Downstream Capacity:
 - 80 usable 8 MHz slots between 100 and 750 MHz
 - Symbol rate = 6.952Msps in 8MHz @ 8bits/symbol for 256QAM
 - Data rate = 55.6Mbps gross, or 51.25Mbps net of overheads
 - With 80 such carriers = <u>4 Gbps</u> net downstream
 - Shared between 500 homes = 8Mbps each with 100% penetration
- 600MHz Networks Capacity Downstream:
 - 61 usable 8MHz slots passing 3.1Gbps
 - Shared between 4000 homes = 780kbps each with 100% penetration

= 3.1Mbps each with 25% penetration

- Upstream Capability:
 - Estimated max of 80Mbps using 16QAM
 - Shared between 500 homes = 160kbps each with 100% penetration

DVB-RC/DAVIC key points

- Out of band downstream 2MHz, 3Mbps QPSK
 = Cheap CPE
- Upstream limited to QPSK only
- ATM for QoS wasteful if services are IP
- DVB-RC Cable Modem uses inband DVB-C carrier
- Require separate INA/CMTS to support STBs and Cable Modems

DOCSIS/Euro-DOCSIS key points

- Upstream to 16QAM
- IP efficient
- Same CMTS can support STBs and Cable Modems
- 1st generation STBs have fully functional Cable Modem in addition to inband tuner
- No cheap out of band option for cheap STBs

Two options

DOCSIS:

- US standard
- Internet/IP driven
- Complete specification
- Mature
- High vendor and chip supplier involvement
- Products already available
- Roadmap to QoS/VoIP
- Not adapted to all European cable plant

DVB-RC:

- New standard
- DVB/ATM driven
- less complete time to market unclear
- low vendor involvement
- unspecified roadmap towards VoIP
- adapted to European cable plants

Progress of Euro-DOCSIS

- DOCSIS defined by US cable operators
- ITU-T adopt DOCSIS 1.0 as Rec.J.112AnnexB
- TOCOF create Euro-DOCSIS as an option in the DOCSIS Radio Frequency Interface (RFI) Specification
 - DVB downstream and FEC (ETSI EN 300 429)
 - wider upstream frequency range to 5-65 MHz
 - levels in line with CENELEC standards
- CableLabs added Euro-DOCSIS to version 1.1 of DOCSIS as Annex N

Progress of Euro-DOCSIS

- Exactly the same version of DOCSIS 1.1
 - Approved by SCTE in US
 - Adopted as ETSI Standard ES 201 488 V1.1.1
 - Submitted to ITU-T as an upgrade to DOCSIS 1.0
- So DOCSIS can be considered to be a common world-wide standard
- Certification to encourage the market
 - tComLabs
 - certification DOCSIS 1.0 with Euro-DOCSIS
 - DOCSIS 1.1 still in early stages
- Work on adaptation to STBs progressing

DOCSIS 1.1 Enhancements

- Baseline Privacy Plus = enhanced security & authentication
- 16 Service levels
 - each of which can have a different class
 - can run simultaneously on single CPE
- Fragmentation to even out payload for CBR and guaranteed bandwidth = QoS

DOCSIS 2.0

- Standard due this year
- Supports symmetry
- Increased data rates

Fibre to the curb, home, building

- Fibre is just another form of wiring
 - the cost of cable install is increasing
 - Fibre could offer 10Gbits/s to the home a future proof solution
- Fibre to the curb / cabinet is a half-way house
 - · less expensive than extending it all the way to the house
 - enables VDSL with data rates of 10 50Mbits/s to be deployed to all homes
- Fibre cost is likely to be uncompetitive compared to fixed wireless
- Where there is already fibre to the curb or building it will be very difficult for fixed wireless to compete

