

Off-Grid Power Systems for Rural Distance Education Schools: Considerations in Selection of Power Systems and End-Use Equipment, and Technical Assistance to Implementing Agencies

Village Power Conference Workshop Rural Telecommunications and Digital Technologies December 4, 2000 Charles Hanley Sandia National Laboratories

Rural distance education programs are expanding globally

- In Mexico, 30 years of experience have produced great results
- Central America: consortium for dissemination of Mexican programming in six countries
- Africa: South Africa, Uganda, other countries
- Asia Indonesia, Thailand, India, others
- South America
- International Solar Energy Society
 - Building global catalog of solar schools

Solar school project at Myeka High, South Africa

Off-grid replication of on-grid successes can cause problems

- Agencies often take their successes off-grid without energy considerations
 - Disconnect between purchase of audio-visual components and energy systems
 - Lower consumption components often not considered
 - Associated more with government programs than private telecommunications companies
- RE system designs are often based on unrealistic load data
 - Poor estimations of cycle times, power draw of components
- Weak supply/maintenance infrastructure can result in a variety of performance problems
 - Mismatches between controllers and batteries
 - Low availability of replacement parts

These issues apply to more than just rural education...

- .. and its associated equipment:
- Education
 - Television and videocassette recorder
 - Satellite receiver system
 - Two-way interactive communications
 - Video/voice
 - Internet access
- Rural telephony
 - Cellular phones
 - Satellite
 - Land-based (cable, fiber optic)

- Rural Telecenters
 - Simpler: phone and fax
 - More complex: phone, email, internet
 - Training, medicine, radio and TV
- Geography, climate, and budget concerns often dictate degree of sophistication of system.

So, what's the point?

- Using grid-connected systems off-grid requires rethinking the energy needs.
- Careful consideration must be given to the use of ENERGY EFFICIENT components.

- A small rural telecommunications center...
 - -Two PCs
 - Telephone/Fax capabilities
 - One printer
 - -Four interior fluorescent lights

PV system design for gridconnected components

Component	Quantity	Power (W)	Hours/day	
Computer (PC	2	200	4	
w/ monitor)				
Phone/Fax	1	100	0.5	
Printer	1	500	0.5	
Lamps	4	40	4	
Taking these components off-grid1,800 Watt-houTotal Daily Energy Demand:1,800 Watt-hou(@12v)151 Amp-hou				
Approximate Ener	rgy System Re	equired (@5 kWh	/m2/day)	
PV array	y:			700 Watts
Battery Bank (3 days autonomy):				700 Amp-hours
Inverter	•			1000 Watts
Approximate	Energy Sy	\$US 7,0	000 - 10,000	

With efficient components, energy system costs much less

Component	Quantity	Power (W)	Hours/day		
Laptop Computers	2	35	4		
Phone/Fax	1	35	1		
Inkjet Printer	1	25	0.5		
Compact	4	13	4		
Fluorescent Lights					
Total Daily Energy	Demand:		(@12v)	380 Watt-hours 32 Amp-hours	
Approximate Energy System Required (@5 kWh/m2/day)					
PV array:					
Battery Bank (3 days autonomy):				150 Amp-hours	
Inverter:				300 Watts	
Approximate Energy System Cost: \$US 1,500 – 2,0				1,500 - 2,000	

• Savings in energy system costs more than make up for increases in costs of components

The case of Mexican telesecundarias

- Mexico is a leader in the application of photovoltaic technology to bring distance education to underserved populations
- Many PV systems are undersized
 - Official specification written in 1992 calls for 192 to 240
 Watts, depending on climate and resource
 - Larger loads than planned lead to deficient systems
- Secretariat of Public Education (SEP) has started initiative to improve PV system considerations

Many Mexican telesecundarias have the following components

Component	Quantity	Power (W)	Hours/day]
27" Color TV	1	100	5	
Sat. Receiver	1	300	5	
(GI 310D)				
VCR	1	20	1	
Fluorescent	3	20	0.5	
Lamps				
Total Daily Energy	y Demand:	1	,464 Watt-hours	
			(@12v)	122 Amp-hours
Approximate Energy System Required (@5 kWh/m2/day)				
PV array:				560 Watts
Battery Bank (3 days autonomy):				600 Amp-hours
Inverter:				500 Watts
Approximate	Energy Sy	\$US 6	,000 – 9,000	

• Present PV system sizes of 200-240 Watts do not meet these loads

With more efficient loads, energy system can be much smaller

Component	Quantity	Power (W)	Hours/day		
27" Color TV	1	100	5		
Sat. Receiver	1	60	5		
(GI 410D)					
VCR	1	20	1		
Fluorescent	3	13	0.5		
Lamps					
Total Daily Energ	gy Demand:		600 Watt-hours		
			(@12v)	50 Amp-hours	
Approximate Energy System Required (@5 kWh/m2/day)					
PV array:				240 Watts	
Battery Bank (3 days autonomy):				300 Amp-hours	
Inverte	r:			200 Watts	
Approximate	Energy Sy	\$US 2	,500 - 4,000		

• This represents a savings of \$US 3,500 - 5,000 per school.

Additional conservation can reduce energy costs further

- Use of all direct-current (DC) components
- Work with teachers to determine minimum acceptable size for televisions
- Use more efficient satellite receivers
- By making substitutions:
 - Televisions: 70 W instead of 100 W
 - Receivers: 25 W instead of 60 W
 - Overall PV system requirement of 120 Watts, at a cost of approximately \$US1500

Other issues must be addressed for sustainability

- Central versus decentralized procurement and technical management
 - Energy component should be considered part of "system"
 - Ownership should exist at the local community level
- Integration of RE for schools into other community activities can help to justify costs and maximize benefits
 - Community centers
 - Emergency preparedness/response centers
 - Other needs: clinics, public lighting, water, etc.
 - Requires coordination among government, non-government institutions
- The usual "renewable energy for rural applications" issues still apply
 - Expensive need for financing
 - Weak supplier and technician network, lack of spare parts

Technical assistance is designed to address long-term issues

Portable satellite education system used for teacher training in Durango

- Sandia/Winrock partnering with Mexican
 Secretariat of Public Education and ILCE
 (Instituto Latinoamericano de la
 Comunicación Educativa)
 - ILCE is an international organization, coordinates curricula throughout Latin America
 - Collaboration has several facets
 - Technical evaluation of sample set of existing PV-powered schools
 - Workshops on design/procurement and development of technical system specifications
 - Other long-term aspects: M&O plans, strengthening supplier capabilities

Sandia/Winrock also working with ILCE in Central America

- Guatemala: more than 400 telesecundarias in operation
 - Government requires that community be electrified for consideration
 - RE opportunities for diesel-powered and unserved communities
- Honduras: first year of USAID-sponsored pilot of 36 telesecundarias
 - All are grid-connected at present
 - More than 2000 rural schools that could benefit from RETs
- In both countries, videotapes of Mexican programming are made at central locations and distributed to schools
 - Reduced power requirements
- Sandia/Winrock team planning demonstration projects in both countries
 - Cooperating with USAID, Ministries of Education
 - Accompanying workshops will add to local capacity building

When you take your grid-connected application off-grid...

... be SURE to consider the energy costs!

Thank you.

