Mobile Radio Communications

Session 1: Introduction

Session 1, page 1 Mobile Radio Communications © J.C. Haartsen

COMMUNICATIONS

Session 1, page 2 Mobile Radio Communications © J.C. Haartsen

HISTORY: stone age

Initial communications were <u>wireless</u>:

human voice (air pressure)

visual messaging

- fires along chinese wall (3000 B.C.)
- Indian smoke signalling
- Semaphores

TELECOMMUNICATION ENGINEERING Session 1, page 3 Mobile Radio Communications © J.C. Haartsen

HISTORY: electrical era

Communications through a wire:

• 1729 Stephen Gray: electrostatic telegrahp

Session 1, page 4 Mobile Radio Communications © J.C. Haartsen

HISTORY: electrical era

Communications through a wire:

• 1850 Telegraph lines across US (Morse code)

- 1851 Submarine cables in the English Channel
- 1876 Alexander Graham Bell: <u>telephony</u>

$\mathbf{DIGITAL} \rightarrow \mathbf{ANALOG}$

Session 1, page 5 Mobile Radio Communications © J.C. Haartsen

HISTORY: radio era

Communications through free space:

- 1890 Heinrich Rudolf Hertz: EM waves
- 1895 Guglielmo Marconi: <u>RADIO</u>
- 1921 Detroit Police Radio
- 1935 Armstrong: Frequency Modulation
- 1968 Cellular concept (Bell labs) / trunked radio

Electrical transmission

• Guided wave transmission: guided by material copper/fiber

• Unguided wave transmission: free-space propagation radio, EM waves

TELECOMMUNICATION ENGINEERING Session 1, page 7 Mobile Radio Communications © J.C. Haartsen

Modern mobile communications

• 1981 Analog cellular radio: 1st generation

- reachability
- voice, voice, voice

• 1990 Digital cellular radio: 2nd generation

- improved capacity
- improved performance
- lower cost
- security
- voice, voice, data

• 2002 Wideband cellular radio: 3rd generation

- increased data rate
- packet services
- multimedia services

TELECOMMUNICATION ENGINEERING

Session 1, page 8 Mobile Radio Communications © J.C. Haartsen

Why 1st generation analog?

• History

Messaging:

- light \rightarrow on/off keying
- semaphore \rightarrow multilevel

digital

• telegraph, marine radio \rightarrow Morse code

Telephony • voice

analog

ANALOG TELEPHONE LINE \rightarrow ANALOG MOBILE RADIO

TELECOMMUNICATION ENGINEERING

Session 1, page 9 **Mobile Radio Communications** © J.C. Haartsen

Why 2st generation digital ?

Performance

- improved spectral efficiency
- increased capacity
- improved voice quality
- time division
- cheaper radio implementation
- encryption

TELECOMMUNICATION ENGINEERING

Session 1, page 10 Mobile Radio Communications © J.C. Haartsen

Why 3rd generation at all ?

Services

- new IMT-2000 spectrum available
- increased data rates
- multimedia services
- service flexibility / differentiation

CIRCUIT ORIENTED \rightarrow **PACKET ORIENTED**

TELECOMMUNICATION ENGINEERING

Session 1, page 11 Mobile Radio Communications © J.C. Haartsen

Circuit switching

- Reserved circuits
- Constant bandwidth
- Telephony paradigm

Session 1, page 12 Mobile Radio Communications © J.C. Haartsen

Packet switching

- Packet transmission
- Variable bandwidth
- Data paradigm

System classification (1)

• Mobile systems

Session 1, page 14 Mobile Radio Communications © J.C. Haartsen

System classification (2)

• Wireless extensions

Session 1, page 15 Mobile Radio Communications © J.C. Haartsen

System classification (3)

Session 1, page 16 Mobile Radio Communications © J.C. Haartsen

- Mobile systems (public cellular, cell phone systems)
 - AMPS: Advanced Mobile Phone System
 - NMT: Nordic Mobile Telephone system
 - (E)TACS: (Extended) Total Access Cellular System
 - **GSM:** Groupe Spéciale Mobile/Global System for Mobile communication, PCS1900, DCS1800
 - IS-136: Interim Standard 136 (formally IS-54), D-AMPS, USDC
 - PDC: Pacific Digital Cellular
 - IS-95: Intermin Standard 95

- Future Mobile systems
 - UMTS: Universal Mobile Telephone System
 - CDMA2000

• **IMT-2000:** International Mobile Telecommunications (formerly FPLMTS: Future Public Land Mobile Telephone Systems)

• 3G, 3GPP: Third Generation Partnership Project

TELECOMMUNICATION ENGINEERING Session 1, page 18 Mobile Radio Communications © J.C. Haartsen

- Wireless extensions
 - **DECT:** Digitally Enhanced Cordless Telephony system
 - PHS: Personal Handy Phone System
 - WLAN 802.11: Wireless Local Area Network
 - HIPERLAN: High Performance Local Area Network

Session 1, page 19 Mobile Radio Communications © J.C. Haartsen

- Ad-hoc connectivity
 - Walky-talky
 - BluetoothTM

Session 1, page 20 Mobile Radio Communications © J.C. Haartsen

Public versus private

• Private

emergency/rescue (land-mobile radio) company/campus (WLAN)

• Public telephony internet

IMPORTANCE OF STANDARDS

TELECOMMUNICATION ENGINEERING

Session 1, page 21 Mobile Radio Communications © J.C. Haartsen

Paging systems

- One-way messaging
- Replaced by two-way cellular solutions
- US use due to billing
- Satellite use due to in-building penetration
- Paging functionality in cellular systems
- ERMES, (RE-)FLEX

Paging in cellular systems

TELECOMMUNICATION ENGINEERING

Session 1, page 23 Mobile Radio Communications © J.C. Haartsen

Mobile satellite systems

• GEO: geostationary earth orbit INMARSAT ACeS (Asia Cellular Satellite

•MEO: medium earth orbit ICO

• LEO: low earth orbit GLOBALSTAR IRIDIUM

• Satellite mode in IMT-2000

TELECOMMUNICATION ENGINEERING

Session 1, page 24 Mobile Radio Communications © J.C. Haartsen

System definitions

- operator \leftrightarrow subscriber, user
- base station \leftrightarrow mobile station
- mobile, terminal, portable, handy, cell phone
- forward \leftrightarrow reverse channel (downlink/uplink)
- control & traffic channels
- paging
- roaming

TELECOMMUNICATION ENGINEERING

Forward and reverse transmissions

How to design a radio system ?

- System architecture
- Frequency band
- Multiple access method
- Medium access control
- Call setup
- Standby mode
- Radio protocol
- Security

Session 1, page 27 Mobile Radio Communications © J.C. Haartsen

How a mobile call is made

- Locking
- Registration
- Idle/standby mode
- Mobile-originated call: connection request
- Mobile-terminated call: page

TELECOMMUNICATION ENGINEERING Session 1, page 28 Mobile Radio Communications © J.C. Haartsen

Registration

TELECOMMUNICATION ENGINEERING

Session 1, page 29 Mobile Radio Communications © J.C. Haartsen

Registration

• Subscriber identity

MIN: Mobile Identification Number IMSI: Internation Mobile Subscriber Identity SIM: Subscriber Identity Mobile

• Equipment identity

ESN: Electronic Serial Number IMEI: Internation Mobile Equipment Identity

Authentication

• Roaming

Session 1, page 30 Mobile Radio Communications © J.C. Haartsen

Connection

- Paging / channel request
- Authentication (billing)
- Traffic channel assignment
- Hand-off
- Attach/detach

Session 1, page 31 Mobile Radio Communications © J.C. Haartsen

Radio spectrum usage

0.1-0.5 MHz	LF	long-distance communications
0.5-3 MHz	MW	AM radio broadcasting
3-30 MHz	HF	CB radio
30-300 MHz	VHF	TV and FM radio broadcasting
300-1000 MHz	UHF	mobile radio
1-10 GHz	microwave	mobile radio, satellite
10-100 GHz	millimeter wave	satellite

TELECOMMUNICATION ENGINEERING

Session 1, page 32 Mobile Radio Communications © J.C. Haartsen

Why radio in 300MHz - 30GHz ?

antenna dimensions:

 $\lambda/4 = C/4f$

path loss:

 $PL = -10 log(\lambda^2/(4\pi d)^2)$

shadowing, directional

$\begin{array}{rll} \textbf{0.3 GHz} < f &< \textbf{30 GHz} \\ 1 \text{ m} &< \lambda &< 1 \text{ cm} \end{array}$

Session 1, page 33 Mobile Radio Communications © J.C. Haartsen

Spectrum allocation

Session 1, page 34 Mobile Radio Communications © J.C. Haartsen

Licensed and unlicensed

	licensed	unlicensed
dedicated	public cellular telephony	cordless telephonly
undedicated	high-power applications	local area

Session 1, page 35 Mobile Radio Communications © J.C. Haartsen

Regulatory bodies

- **CEPT:** Conférence Européne des Administration des postes et des télécommunications
- **ETSI:** European Technical Standards Institute
- FCC: Federal Communications Commission
- MPT: Ministry of Posts and Telecommunications of Japan
- ITU-R: International Telecommunications Union -Radiocommunication section
- WARC: World Administration Radio Conference

Standardization bodies

- ETSI: European Technical Standards Institute
- TIA: Telecommunications Industry Association
- ARIB: Association of Radio Industries and Businesses
- ITU: International Telecommunications Union
- IEEE: Institute of Electrical and Electronics Engineers

TELECOMMUNICATION ENGINEERING

Session 1, page 37 Mobile Radio Communications © J.C. Haartsen

FDD AND TDD

Session 1, page 38 Mobile Radio Communications © J.C. Haartsen

A layered structure

OSI protocol stack

TELECOMMUNICATION ENGINEERING

Session 1, page 39 Mobile Radio Communications © J.C. Haartsen

From source to sink

Session 1, page 40 Mobile Radio Communications © J.C. Haartsen

Source coding/decoding

• Remove redundancy

• Minimize amount of information to be transmitted

Voice:	vocoders (model + excitation), LPC
Data:	spaces, Huffman coding
Video:	transform techniques (DCT)

Not covered in this course. Chapter 7 in book for those interested.

TELEO E

TELECOMMUNICATION ENGINEERING Session 1, page 41 Mobile Radio Communications © J.C. Haartsen

Channel coding/decoding

Add controlled redundancy

Correlation between correct and incorrect bits

HELPS ONLY IF CHANNEL CONDITIONS VARY: "good" bits help "bad" bits

Session 5: Equalization, channel coding, and interleaving

TELECOMMUNICATION ENGINEERING

Session 1, page 42 Mobile Radio Communications © J.C. Haartsen

Modulation/demodulation

• Mapping of bits to symbols

• Mapping of symbols to physical parameters

AMPLITUDE / PHASE

Session 4: Modulation & transmission

TELECOMMUNICATION ENGINEERING

Session 1, page 43 Mobile Radio Communications © J.C. Haartsen

Transmission/reception

• Up and downconversion from baseband to RF

• Amplification, filtering

Session 4: Modulation & transmission

TELECOMMUNICATION ENGINEERING

Session 1, page 44 Mobile Radio Communications © J.C. Haartsen

Propagation channel

- Radio wave propagation
- Noise, range
- Blocking, shadowing, diffraction
- Multi-path effects, reflections

Session 3: Radio propagation

TELECOMMUNICATION ENGINEERING

Session 1, page 45 Mobile Radio Communications © J.C. Haartsen

Multi-path effects

Fading

Session 1, page 47 Mobile Radio Communications © J.C. Haartsen

Interference

- Co-channels and adjacent channels
- Capacity
- Medium access

Session 2: The cellular concept Session 6: Multiple access

TELECOMMUNICATION ENGINEERING

Session 1, page 48 Mobile Radio Communications © J.C. Haartsen

Radio systems

Session 7: Wireless LAN systems Session 8: Mobile systems Session 9: Ad-hoc systems

Session 1, page 49 Mobile Radio Communications © J.C. Haartsen

FOR NEXT WEEK

- Read: Chapter 1: §1.1 - 1.5 Chapter 2: §2.1 - 2.8 (not 2.7.3) Chapter 8: §8.7
- Solve problems:

Chapter 1: 1.5, 1.6, 1.8, 1.10

TELECOMMUNICATION ENGINEERING Session 1, page 50 Mobile Radio Communications © J.C. Haartsen

Case study

UMTS frequency auctioning:

UK: GBP 22.5 billion

Germany: DM 99 billion

Holland: DFL 5.9 billion

How many years before break-even point ?

TELECOMMUNICATION ENGINEERING

Session 1, page 51 Mobile Radio Communications © J.C. Haartsen

Penetration

Population:	
UK:	59 million
Germany:	82 million
Holland:	16 million

Subscriber growth:

year 1:	0.5% of population
year 2:	2%
year 3:	10%
year	4 and beyond: 30%

TELECOMMUNICATION ENGINEERING Session 1, page 52 Mobile Radio Communications © J.C. Haartsen

User traffic & expenses

<u>Usage pattern:</u>	
voice:	10 minutes/day
data:	10Mbytes/day

Billing:subscription:DFL 25 / monthvoice:DFL 0.25/minutedata:DFL 0.10/Mbyte

<u>Total</u>: DFL 300 + 912.5 + 365 = DFL 1577.5 /user-year

TELECOMMUNICATION ENGINEERING

Session 1, page 53 Mobile Radio Communications © J.C. Haartsen

Operator expenses

<u>Network roll-out</u>: DFL 150 per (expected) user

Operation&maintenance: DFL 200 per user

License

TELECOMMUNICATION ENGINEERING Session 1, page 54 Mobile Radio Communications © J.C. Haartsen

