Mobile Radio Communications

Course 2: The cellular concept

Session 2, page 1 Mobile Radio Communications © J.C. Haartsen

Scarce radio spectrum

AMPS:832 paired frequencies; 832 paired channelsGSM:124 paired frequencies; 992 paired channels

FREQUENCY REUSE

TELECOMMUNICATION ENGINEERING

Session 2, page 2 Mobile Radio Communications © J.C. Haartsen

Signal-to-interference ratio

- S: signal power from desired transmitter
- I: total signal power from undesired transmitters

Session 2, page 3 Mobile Radio Communications © J.C. Haartsen

Cellular reuse

TELECOMMUNICATION ENGINEERING

Session 2, page 4 Mobile Radio Communications © J.C. Haartsen

Reuse cluster

TELECOMMUNICATION ENGINEERING

Session 2, page 5 Mobile Radio Communications © J.C. Haartsen

TELECOMMUNICATION ENGINEERING

Session 2, page 6 Mobile Radio Communications © J.C. Haartsen

Frequency reuse factor

 $N = i^2 + ij + j^2$

ijN0111130241270392212

TELECOMMUNICATION ENGINEERING

Session 2, page 7 Mobile Radio Communications © J.C. Haartsen

Cell capacity

- *N*: frequency reuse factor = cluster size
- *M*: total number of (paired) channels per system
- k: number of channels per cell

$$k = \frac{M}{N}$$

TELECOMMUNICATION ENGINEERING Session 2, page 8 Mobile Radio Communications © J.C. Haartsen

Interference

Co-channel:on same frequencyAdjacent channel:on neighboring frequencies

Reuse distance

 $L_i = i\sqrt{3}R;$ $L_j = j\sqrt{3}R;$

Session 2, page 10 Mobile Radio Communications © J.C. Haartsen

Reuse ratio

$$D^{2} = \left(L_{i} + \frac{1}{2}L_{j}\right)^{2} + \left(\frac{1}{2}\sqrt{3}L_{j}\right)^{2} =$$

= $L_{i}^{2} + L_{i}L_{j} + L_{j}^{2}$
= $3 \cdot \left(i^{2} + ij + j^{2}\right) \cdot R^{2} = \frac{3N \cdot R^{2}}{3N \cdot R^{2}}$

Session 2, page 11 Mobile Radio Communications © J.C. Haartsen

Reuse and S/I

$$S = \frac{\alpha}{R^{n}}; \quad I_{j} = \frac{\alpha}{D^{n}}$$
$$\frac{S}{I} = \frac{D^{n}}{6 \cdot R^{n}} = \frac{1}{6} \left(\frac{D}{R}\right)^{n} = \frac{1}{6} (3N)^{n/2}$$
$$N = \frac{1}{3} \left(6 \cdot \frac{S}{I}\right)^{\frac{2}{n}}$$

TELECOMMUNICATION ENGINEERING Session 2, page 12 Mobile Radio Communications © J.C. Haartsen

Capacity

k: capacity in channels/cell

Session 2, page 13 Mobile Radio Communications © J.C. Haartsen

Intrinsic capacity

$$C = k \cdot \frac{R_b}{B_T} = \frac{B_T}{B_C} \cdot \frac{1}{N} \cdot \frac{R_b}{B_T} =$$
$$= \frac{R_b}{B_C} \cdot \frac{1}{N}$$

- C: capacity in bits/s/Hz/cell
- **N:** reuse factor
- R_b : data rate in b/s
- B_{c} : channel bandwidth in Hz

TELECOMMUNICATION ENGINEERING

Session 2, page 14 Mobile Radio Communications © J.C. Haartsen

Intrinsic capacity

Spectral efficiency:
$$\eta_B = \frac{R_b}{B_C} \Rightarrow$$

 $C = \frac{\eta_B}{N}$

- C: capacity in bits/s/Hz/cell
- **N:** reuse factor
- $\eta_{\rm B}$: spectral efficiency b/s/Hz

Session 2, page 15 Mobile Radio Communications © J.C. Haartsen

Intrinsic capacity

- **GSM:** $\eta_{\rm B} = 1.35$ b/s/Hz; N = 3 C = 0.45 b/s/Hz/site
- IS-54: $\eta_{\rm B} = 1.62$ b/s/Hz; N = 7 C = 0.23 b/s/Hz/site
- **PDC:** $\eta_{\rm B} = 1.68$ b/s/Hz; N = 7 C = 0.24 b/s/Hz/site
- **DECT:** $\eta_{\rm B} = 0.67$ b/s/Hz; N = 10 C = 0.07 b/s/Hz/site

Session 2, page 16 Mobile Radio Communications © J.C. Haartsen

Improving system capacity

- Power control
- Dynamic channel assignment
- Channel hopping
- Improved coding and modulation
- Cell splitting
- Sectoring

Session 2, page 17 Mobile Radio Communications © J.C. Haartsen

Power control

TELECOMMUNICATION

Session 2, page 18 Mobile Radio Communications © J.C. Haartsen

ELECOMMUNICATION ENGINEERING Session 2, page 20 Mobile Radio Communications © J.C. Haartsen

TELECOMMUNICATION ENGINEERING

Session 2, page 21 Mobile Radio Communications © J.C. Haartsen

Sectoring

- Less number of dominant interferers
 - 120°: 2 dominant
 - 60°: 1 dominant
- Directional antennas
- n/m reuse: n-site/m-sector reuse
- Less channels per antenna

Session 2, page 22 Mobile Radio Communications © J.C. Haartsen

TELECOMMUNICATION ENGINEERING Session 2, page 23 Mobile Radio Communications © J.C. Haartsen

Directional antennas

Session 2, page 24 Mobile Radio Communications © J.C. Haartsen

TELECOMMUNICATION ENGINEERING

Session 2, page 25 Mobile Radio Communications © J.C. Haartsen

Cell planning

TELECOMMUNICATION ENGINEERING

Session 2, page 26 Mobile Radio Communications © J.C. Haartsen

Cell planning

- Coverage
- Outage: percentage of coverage where S/I<(S/I)_{min}
- Trunking (Grade of service)
- Fixed channel allocation
- Dynamic channels allocation
- Planning tools

TELECOMMUNICATION

Session 2, page 28 Mobile Radio Communications © J.C. Haartsen

 P_{ho} :handoff threshold P_{min} :minimum usable

$$\Delta = \boldsymbol{P}_{ho} - \boldsymbol{P}_{min}$$

Session 2, page 30 Mobile Radio Communications © J.C. Haartsen

Handoff

- Margin / hysteresis
- Handoff threshold
- Mobile Assisted Handoff (MAHO)
- <u>Hard handoff</u> versus <u>Soft handoff</u>

TELECOMMUNICATION ENGINEERING

Session 2, page 31 Mobile Radio Communications © J.C. Haartsen

College 2, Blad 32 ©2000/2001, MRC

Handoff

ତମ୍ଭର୍ବତା ଥି: Bitstr ଓଡ଼ି Mobile ନୁହୁର୍ଗୁଡ଼/ହୁତ୍ମମ୍ମମ୍ୟକ୍ଟcations © J.C. Haartsen

Macro, micro and pico cells

Session 2, page 34 Mobile Radio Communications © J.C. Haartsen

Macro, micro and pico cells

TELECOMMUNICATION ENGINEERING

Session 2, page 35 Mobile Radio Communications © J.C. Haartsen

Trunking

- Sharing channel among several users
- Statistical multiplexing (traffic behavior)
- Trunking gain

Session 2, page 36 Mobile Radio Communications © J.C. Haartsen

Trunking

College 2, Blad 37 ©2000/2001, MRC

Trunking

TRUNKED RADIO SYSTEM

ອອາຄ່ອຍ 2, Brate 3ອ Mobile @ 2010/ 2001 ການເຮັດ © J.C. Haartsen

Traffic intensity

Erlangs: traffic load

$$A_{user} = \mu_{ave} \cdot H_{ave}$$

A_{user}: user load in Erlangs
μ_{ave}: average number of call requests per second
H_{ave}: average call duration in seconds

TELECOMMUNICATION ENGINEERING

Session 2, page 39 Mobile Radio Communications © J.C. Haartsen

Traffic intensity

Example: 10 calls a day (12 hours); 20 minutes each

Arrival rate μ: **Duration** *H*: 10 calls/12 hours = 2.3e-4 20×60=1200s

A_{user}:

276mErlangs

TELECOMMUNICATION ENGINEERING

Session 2, page 40 Mobile Radio Communications © J.C. Haartsen

Traffic intensity

Offered load by *U* **users:**

$$A_{offered} = U \cdot A_{user}$$

Maximally carried load by k channels:

$$A_{carried} = k$$

To prevent blocking:

 $A_{offered} < A_{carried}$

TELECOMMUNICATION ENGINEERING Session 2, page 41 Mobile Radio Communications © J.C. Haartsen

Grade of service

GOS: percentage of blocked calls

- *μ*: **Poisson distributed**
- *H*: Exponentially distributed

Session 2, page 42 Mobile Radio Communications © J.C. Haartsen

ErlangB formula

GOS: percentage of blocked calls

Session 2, page 43 Mobile Radio Communications © J.C. Haartsen

Grade of service

Capacity (Erlangs)

k	GOS=1%	0.1%
2	0.153	0.046
4	0.869	0.439
10	4.46	3.09
20	12.0	9.41
40	29.0	24.5
100	84.1	75.2

Session 2, page 44 Mobile Radio Communications © J.C. Haartsen

Trunking gain

Required GOS=1%

5 sites with 2 channels each: $A_{offered}$ /site = 0.153 Erlangs $A_{offered}$ = 0.765 Erlangs

1 sites with 10 channels: $A_{offered}$ /site = 4.46 Erlangs $A_{offered}$ = 4.46 Erlangs

Trunking gain = 4.46/0.765 = 5.8

Session 2, page 45 Mobile Radio Communications © J.C. Haartsen

Capacity

Capacity *U* in users per cell

k channels per cell:

$$U = \frac{A_{offered}(k, GOS)}{A_{user}}$$

k=16 channels/cell, GOS=2%, $A_{user}=100$ mErlangs $\Rightarrow A_{offered}=10$ $\Rightarrow U=100$

TELECOMMUNICATION ENGINEERING

Session 2, page 46 Mobile Radio Communications © J.C. Haartsen

Effective reuse

$$N = \frac{M}{k}$$
$$N_{eff} = \frac{M}{A_{offered}} = \frac{k}{A_{offered}} N$$

k=16 channels/cell, GOS=2%, $N=7 \Rightarrow A_{offered}=10$

 $\Rightarrow N_{eff}=11.2$

TELECOMMUNICATION ENGINEERING

Session 2, page 47 Mobile Radio Communications © J.C. Haartsen

Trunking gain

- maximize k
- minimizing reuse factor N will improve k
- sectoring will <u>reduce</u> k
- dynamic channel allocation will improve k
- radio ports & costs

Session 2, page 48 Mobile Radio Communications © J.C. Haartsen

FOR NEXT WEEK

• Read:

Chapter 3: §3.1, 3.2, 3.4, 3.6, 3.9, 3.10.3, 3.10.4 Chapter 4: §4.1, 4.2 (<u>not</u> 4.2.1), 4.4 - 4.6

• Solve problems:

Chapter 2: 2.5, 2.8, 2.18, 2.20

Note, for 2.5: take # channels=395

TELECOMMUNICATION ENGINEERING

Session 2, page 49 Mobile Radio Communications © J.C. Haartsen

