Mobile Radio Communications

Course 3: Radio wave propagation

Session 3, page 1 Mobile Radio Communications © J. C. Haartsen

Propagation mechanisms

- free space propagation
- reflection
- diffraction
- scattering

LARGE SCALE: average attenuation

 $dx >> \lambda$ $dt >> T_s$

SMALL SCALE: short-term variations in position and time $dx \approx \lambda$ $dt \approx T_s$

TELECOMMUNICATION ENGINEERING

Session 3, page 2 Mobile Radio Communications © J. C. Haartsen

Large-scale/small scale variations <u>space</u>

Session 3, page 3 Mobile Radio Communications © J. C. Haartsen

Large-scale/small scale variations <u>time</u>

Session 3, page 4 Mobile Radio Communications © J. C. Haartsen

Free-space propagation

- **P:** power
- G: antenna gain
- *d*: separation distance
- *L*: system loss

$$P_{R}(d) = \frac{P_{T} \cdot G_{T} \cdot G_{R} \cdot \lambda^{2}}{(4\pi)^{2} \cdot d^{2} \cdot L}$$

Session 3, page 5 Mobile Radio Communications © J. C. Haartsen

Antenna gain

- isotropic: G=1
- directional: $G(\theta)$

EIRP: effective isotropic radiated power

(received power as if received from isotropic source)

TELECOMMUNICATION ENGINEERING

Session 3, page 6 Mobile Radio Communications © J. C. Haartsen

Free-space path loss

$$PL = 10\log\frac{P_T}{P_R}$$
$$= 20\log\frac{4\pi}{\lambda} + 20\log d$$
$$= PL(d_0) + 20\log\frac{d}{d_0}$$

attenuation 20 dB/dec

TELECOMMUNICATION ENGINEERING

Session 3, page 7 Mobile Radio Communications © J. C. Haartsen

 $E_{tot} = \frac{\alpha}{d_1} \cos(\omega_c t) + \Gamma \frac{\alpha}{d_2} \cos(\omega_c t + \Delta \theta)$

Session 3, page 8 Mobile Radio Communications © J. C. Haartsen

$$\Delta = d_2 - d_1$$

= $\sqrt{d^2 + (h_t + h_r)^2} - \sqrt{d^2 + (h_t - h_r)^2}$
 $\approx \frac{2h_t h_r}{d} \qquad d >> h$

$$\Delta \theta \approx \frac{4\pi h_t h_r}{\lambda d}$$

Session 3, page 9 Mobile Radio Communications © J. C. Haartsen

$$E^{2} = \left(\frac{\alpha}{d}\right)^{2} \left\{ \left(1 - \cos \Delta \theta\right)^{2} + \sin^{2} \Delta \theta \right\}$$
$$= \left(\frac{\alpha}{d}\right)^{2} \left(2 - 2\cos 2\Delta \theta\right) \approx \left(\frac{\alpha}{d}\right)^{2} \left(\Delta \theta\right)^{2}$$

TELECOMMUNICATION

Session 3, page 10 Mobile Radio Communications © J. C. Haartsen

$$E \approx \left(\frac{\alpha}{d}\right) \frac{4\pi h_t h_r}{\lambda d}$$

$$P_r = \left| E \right|^2 \frac{A_e}{120\pi} \approx \beta \frac{\left(h_t h_r\right)^2}{d^4}$$

$$A_e \approx G \frac{\lambda^2}{4\pi}$$

TELECOMMUNICATION ENGINEERING Session 3, page 11 Mobile Radio Communications © J. C. Haartsen

Two-ray path loss model

 $PL = 40 \log d -$

$(10\log G_t + 10\log G_r + 20\log h_t + 20\log h_r)$

attenuation 40 dB/dec

ELECOMMUNICATION ENGINEERING

Session 3, page 12 Mobile Radio Communications © J. C. Haartsen

Path loss exponent

Session 3, page 13 Mobile Radio Communications © J. C. Haartsen

Log-distance path loss model

$$\overline{PL} = PL(d_0) + 10n \log \frac{d}{d_0}$$

d: T-R distance

 d_0 : close-in reference distance

n: path loss exponent ranging from 1 to 6

Session 3, page 14 Mobile Radio Communications © J. C. Haartsen

Okumura path loss model

 $L_{50} = L_F + A_{mu}(f, d) - G(h_t) - G(h_r) - G_{AREA}$

$$G(h_t) = 20 \log(\frac{h_t}{200}) \qquad 10 \text{m} < h_t < 1000\text{m}$$
$$G(h_r) = 10 \log(\frac{h_r}{3}) \qquad h_r < 3\text{m}$$
$$G(h_r) = 20 \log(\frac{h_r}{3}) \qquad 3\text{m} < h_t < 10\text{m}$$

TELECOMMUNICATION ENGINEERING

Session 3, page 15 Mobile Radio Communications © J. C. Haartsen

Hata path loss model

 $L_{50} = 69.55 + 26.16 \log f_c - 13.82 \log h_t - a(h_r) + (44.9 - 6.55 \log h_t) \log d + C(f_c)$

Session 3, page 16 Mobile Radio Communications © J. C. Haartsen

Coverage area

Session 3, page 17 Mobile Radio Communications © J. C. Haartsen

Log-normal shadowing

 $PL = \overline{PL}(d) + X_{\sigma}$

Session 3, page 18 Mobile Radio Communications © J. C. Haartsen

Log-normal shadowing

 $\mathbf{X} = N(0, \boldsymbol{\sigma})$

zero-mean Gaussion with standard dev. $\boldsymbol{\sigma}$

outdoor: σ=6-9dB

indoor: σ=2-12dB

TELECOMMUNICATION ENGINEERING Session 3, page 19 Mobile Radio Communications © J. C. Haartsen

Link budget

N

Multipath fading

Session 3, page 21 Mobile Radio Communications © J. C. Haartsen

Multipath effects

- Doppler spread
 - speed
 - angle of arrival

TELECOMMUNICATION ENGINEERING

Session 3, page 22 Mobile Radio Communications © J. C. Haartsen

Delay space phenomenon

TELECOMMUNICATION ENGINEERING

Session 3, page 23 Mobile Radio Communications © J. C. Haartsen

Fading

$$\Delta d \approx \lambda$$
$$\Delta \tau \approx \frac{\lambda}{c} = \frac{1}{f_c}$$
$$\Delta \theta \approx \pi$$

RF waves

$$s_1 = r_1 \cos \theta_1$$

$$s_2 = r_2 \cos \theta_2$$

$$s_3 = r_3 \cos \theta_3$$

TELECOMMUNICATION ENGINEERING

Session 3, page 24 Mobile Radio Communications © J. C. Haartsen

© J. C. Haartsen

Doppler spread

Session 3, page 26 Mobile Radio Communications © J. C. Haartsen

Doppler shifts

TELECOMMUNICATION ENGINEERING

Session 3, page 27 Mobile Radio Communications © J. C. Haartsen

Doppler spread

v (km/h)	$f_{\rm c}$ (MHz)	$f_{\rm d}$ (Hz)
50	900	40
100	900	80
50	2010	90
100	2010	180

Session 3, page 28 Mobile Radio Communications © J. C. Haartsen

Measured delay profile

Session 3, page 30 Mobile Radio Communications © J. C. Haartsen

Impulse response model

time-variant, linear system: $h(t, \tau)$

- *t*: time variant due to motion (ms to s)
- τ : time dispersion (ns to μ s)

filter representation:

$$y(t) = x(t) * h(t, \tau)$$

Session 3, page 31 Mobile Radio Communications © J. C. Haartsen

FIR representation

$$h_b(t,\tau) = \sum_{i=0}^{N-1} a_i(t) \exp\{-j\theta_i(t)\}\delta(\tau-\tau_i)$$

 $BW_{signal} < 1/(2\Delta\tau)$ $\tau 0:$ excess delay reference $N\Delta\tau:$ maximum excess delay

Session 3, page 32 Mobile Radio Communications © J. C. Haartsen

FIR representation

Session 3, page 33 Mobile Radio Communications © J. C. Haartsen

Power delay profile

 $\left|h_{b}(t,\tau)\right|^{2}$

measured in local area
spatial averaging (2-6m)

TELECOMMUNICATION ENGINEERING Session 3, page 34 Mobile Radio Communications © J. C. Haartsen

Time dispersion parameters

$$\overline{\tau^2} = \frac{\sum_{k} P(\tau_k) \tau_k^2}{\sum_{k} P(\tau_k)}$$

mean excess delay: $\overline{\tau}$ rms delay spread: $\sigma_{\tau} = \sqrt{\overline{\tau}^2 - (\overline{\tau})^2}$

maximum excess delay: τ where $P \leq P_{max}$

TELECOMMUNICATION ENGINEERING

Session 3, page 35 Mobile Radio Communications © J. C. Haartsen

Time dispersion example

Session 3, page 36 Mobile Radio Communications © J. C. Haartsen

Time dispersion values

environment	f(MHz)	$\sigma_{ au}$
urban	900	10-25µs
suburban	900	200-300ns
indoor	1500	70-90ns

Session 3, page 37 Mobile Radio Communications © J. C. Haartsen

Coherence bandwidth

$h(t, \tau) \leftrightarrow H(f)$

B_c: \Delta f where frequencies become uncorrelated

corr.>0.5

TELECOMMUNICATION ENGINEERING Session 3, page 38 Mobile Radio Communications © J. C. Haartsen

Flat fading

All frequency components fade identically.

Session 3, page 39 Mobile Radio Communications © J. C. Haartsen

Frequency-selective fading

Different frequency components fade differently.

Session 3, page 40 Mobile Radio Communications © J. C. Haartsen

Rayleigh fading

- Amplitude fading
- N i.i.d. components: resultant Normally (Gaussian) distributed
- Gaussian distribution on I and Q gives Rayleigh on envelope

Rayleigh distribution

$$p(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2}{2\sigma^2}\right) \quad (r \ge 0)$$

TELECOMMUNICATION ENGINEERING

Session 3, page 42 Mobile Radio Communications © J. C. Haartsen

Rician fading

- Amplitude fading
- One dominant component + N i.i.d. components: resultant Rician distributed

Session 3, page 43 Mobile Radio Communications © J. C. Haartsen

Rician distribution

$$p(r) = \frac{r}{\sigma^2} \exp\left(-\frac{r^2 + A^2}{2\sigma^2}\right) I_0\left(\frac{Ar}{\sigma^2}\right) \quad (A, r \ge 0)$$

A: amplitude of dominant component *I*₀: zero-order Bessel function

Rician factor:
$$K = \frac{A^2}{2\sigma^2}$$

TELECOMMUNICATION ENGINEERING

Session 3, page 44 Mobile Radio Communications © J. C. Haartsen

Rician distribution

$K \rightarrow -\infty$:	approaching Rayleigh
$K \rightarrow \infty$:	approaching $N(A,\sigma)$

TELECOMMUNICATION ENGINEERING

Session 3, page 45 Mobile Radio Communications © J. C. Haartsen

Modeling: flat fading

a: Rayleigh dist. *φ*: uniform (0,2π]

Session 3, page 46 Mobile Radio Communications © J. C. Haartsen

Modeling: 2-ray fading

Session 3, page 47 Mobile Radio Communications © J. C. Haartsen

Doppler spread

Session 3, page 48 Mobile Radio Communications © J. C. Haartsen

Doppler power spectrum

TELECOMMUNICATION ENGINEERING

Session 3, page 49 Mobile Radio Communications © J. C. Haartsen

Coherence time

$$S_D(f) \leftrightarrow h_D(t)$$

$T_c: \Delta t$ where samples become uncorrelated

Session 3, page 50 Mobile Radio Communications © J. C. Haartsen

Slow and fast fading

Fast fading:

Slow fading:

Session 3, page 51 Mobile Radio Communications © J. C. Haartsen

Slow/fast - flat/freq-sel. fading

Flat / frequency selective fading:

Echo pattern h(t, T)

Fast / slow fading:

Motion effects $h(\mathbf{t},\tau)$

Session 3, page 52 Mobile Radio Communications © J. C. Haartsen

Multipath time scales

• Amplitude fading:
$$dt \approx \frac{1}{f_c}$$
 (i.e. $dt=1$ ns)
• Time dispersion: $dt \approx \frac{\Delta d}{c}$ (i.e. $dt=1$ µs)
• Doppler spread: $dt \approx \frac{1}{f_d}$ (i.e. $dt=10$ ms)

ATION NG **Mob**

Session 3, page 55 Mobile Radio Communications © J. C. Haartsen

FOR NEXT WEEK

• Read:

Chapter 5: §5.1, 5.2 (<u>not</u> 5.2.2, 5.2.3), 5.3 (<u>not</u> 5.3.2, 5.3.3) §5.4 - 5.9 (<u>not</u> 5.7.8)

Solve problems:

Chapter 4: 4.2, 4.3, 4.5, 4.18, 4.21

NICATION RING M

Session 3, page 56 Mobile Radio Communications © J. C. Haartsen

