Mobile Radio Communications

Session 6: Spread spectrum & multiple access

Session 6, page 1 Mobile Radio Communications © J.C. Haartsen

Spread spectrum

• Transmission bandwidth >> signal bandwidth

$W >> B_s$

- Coding
- Wideband FM
- Direct-sequence spreading
- Frequency-hop spreading
- Time-hop spreading

Direct-sequence spread spectrum (DSSS)

Session 6, page 3 Mobile Radio Communications © J.C. Haartsen

De-spreading (multiplier)

De-spreading (matched filter)

$$d_{k}|_{t=T_{s}} = b_{k} \left[s_{i}(t) * s_{j}^{*}(T_{s}-t) \right]_{t=T_{s}} = \begin{cases} b_{k} \sqrt{\frac{E_{b}T_{s}}{2}} & i=j \\ 0 & i\neq j \end{cases}$$

TELECOMMUNICATION ENGINEERING

Session 6, page 5 Mobile Radio Communications © J.C. Haartsen

Noise performance

Signal:	$P_r = E_b / T_b$	$P_r = E_b / T_b$
Noise:	$P_n = N_0 \cdot W$	$P_n = N_0 \cdot B_s$
SNR:	$\gamma_1 = \frac{E_b}{N_0} \cdot \frac{B_s}{W}$	$\gamma_0 = \frac{E_b}{N_0}$

TELECOMMUNICATION ENGINEERING

Session 6, page 6 Mobile Radio Communications © J.C. Haartsen

Interference performance $s_1(t) \cdot s_2(t) \iff S_1(f) * S_2(f)$

Session 6, page 7 Mobile Radio Communications © J.C. Haartsen

Interference performance

© J.C. Haartsen

Spreading signature

- "noise"-like characteristics
 - flat output spectrum
 - autocorrelation function like Dirac impulse
- (pseudo) noise (PN) sequences
- random series of <u>chips</u>

PN sequences

- Maximum length (ML) chip sequences
 - good periodic auto-correlation
- Gold sequences
 - good cross-correlation
- Barker sequences
 - good a-periodic auto-correlation

Session 6, page 10 Mobile Radio Communications © J.C. Haartsen

PN sequence auto-correlation

Multi-code concept

- orthogonality: ∫s_i(t) · s_j(t)dt = 0 i≠j
 near-far problem: processing gain
- power control

TELECOMMUNICATION ENGINEERING

Session 6, page 12 **Mobile Radio Communications** © J.C. Haartsen

Frequency-selective fading

- multipath conditions
- delayed versions
- autocorrelation properties
- $B_s > B_{coh} => T_s < T_{rms}$

ENGINEERING

Mobile Radio Communications

© J.C. Haartsen

RAKE receiver

Frequency-hop spread spectrum (FHSS)

• $s_1 = s_2$ is a pseudo-random <u>hop</u> sequences

Session 6, page 15 Mobile Radio Communications © J.C. Haartsen

Slow/fast hopping

 $\underline{\text{slow:}} \quad \{b_0, b_1, b_2, \dots\} \rightarrow f_0$ $T_h > T_b$

<u>fast:</u>

TELECOMMUNICATION ENGINEERING

Session 6, page 16 Mobile Radio Communications © J.C. Haartsen

Interference performance

- <u>Narrow band</u> instantaneously, <u>wide band</u> on average
- Filters reject interference not in instantaneous hop channel
- Better <u>near-far resistance</u>
- Resistant against narrowband jammers

Processing gain = # of hop channels = $\frac{W}{B_s}$

TELECOMMUNICATION ENGINEERING Session 6, page 17 Mobile Radio Communications © J.C. Haartsen

Interference performance

• Collision probability:

K users *M* hop channels hop alignment

$$P_{hit} = 1 - \left(1 - \frac{1}{M}\right)^{K-1} \approx \frac{K-1}{M}$$

• Average BER: BER_{hit}=0.5 BER_{no hit}=0

$$P_e \approx \frac{1}{2} \left(\frac{K - 1}{M} \right)$$

Session 6, page 18 Mobile Radio Communications © J.C. Haartsen

Throughput performance

Session 6, page 19 Mobile Radio Communications © J.C. Haartsen

Coding & interleaving

• Interleaving over hops

• De-interleaved

- Interference
- Frequency-selective fading
- Retransmit diversity

TELECOMMUNICATION ENGINEERING

Session 6, page 20 Mobile Radio Communications © J.C. Haartsen

- Pseudo-random interval τ_i
- Pulse width T_p
- Processing gain: duty cycle T_p/τ_{ave}
- Resistant against <u>intermittent</u> jammer
- PPM: pulse position modulation

(time sequence)

Time hopping

Comparison with FH:

FH	TH
instantaneous narrowband	instantaneous wideband
narrowband filter	short scan window
narrowband jammer	low duty cycle jammer

TELECOMMUNICATION ENGINEERING

Session 6, page 22 Mobile Radio Communications © J.C. Haartsen

Spreading sequence

chip sequence
hop sequence
time sequence

Phase in sequence

sequence synchronization symbol synchronization

Synchronization

Before de-spreading:

$$\frac{E_c}{N_0} = \frac{T_c}{T_s} \frac{E_b}{N_0} = \frac{B_s}{W} \frac{E_b}{N_0}$$

$$\frac{\frac{E_b}{N_0} = 5dB}{\frac{B_s}{W} = -18dB} \quad \left\{ \begin{array}{l} \frac{E_c}{N_0} = -13dB \end{array} \right\}$$

Search, synchronize, track

Session 6, page 24 Mobile Radio Communications © J.C. Haartsen

Wideband fundamentals

Spread spectrum

Does not improve SNR Does provide frequency (or time) and interference diversity Requires strict synchronization Allows multi-user sharing same band

FEC coding

Does improve SNR Single user

Wideband FM

Does improve SNR Single user

TELECOMMUNICATION ENGINEERING Session 6, page 25 Mobile Radio Communications © J.C. Haartsen

Multiple Access Techniques

- Channel definition
 - Separation of forward and reverse transmission
 - Separation of control and traffic flows
 - Separation of users (orthogonality)
- Not to be confused with MAC (Medium Access Control)

TELECOMMUNICATION ENGINEERING

Duplexing

- Simplex: one-directional
- Half-duplex: two-directional / push-to-talk
- Full-duplex: two-directional / unconditionally
- Only for full-duplex, division is required
 - Frequency Division Duplex (FDD)
 - Time Division Duplex (TDD)

TELECOMMUNICATION ENGINEERING Session 6, page 27 Mobile Radio Communications © J.C. Haartsen

Duplexing

Offset-FDD: uplink/downlink at different frequencies but also separated in time

TELECOMMUNICATION ENGINEERING

Session 6, page 28 Mobile Radio Communications © J.C. Haartsen

Multi-user systems

• Separation of channels in

– frequency	FDMA
– time	TDMA
- code	CDMA
– space	SDMA

TELECOMMUNICATION ENGINEERING Session 6, page 29 Mobile Radio Communications © J.C. Haartsen

Frequency Division Multiple Access

- Division of frequency space in (narrow) frequency bands
- Only FDMA allows CW modulation
 ⇒ used for first generation, analog systems
- Narrowband modulation robust in dispersive channels
- FDMA/FDD uses duplexer
- Other MA techniques always used in combination with FDMA (also called <u>Multi Carrier</u> or MC)

TELECOMMUNICATION ENGINEERING Session 6, page 30 Mobile Radio Communications © J.C. Haartsen

Drawbacks:

- No flexible service allocation (dynamic bandwidth)
- No sharing of channels (circuit-switched)
- High-Q filters & duplexers

TELECOMMUNICATION ENGINEERING

Session 6, page 31 Mobile Radio Communications © J.C. Haartsen

FDMA receivers

- User separation by LO + narrowband filter
- Crystals define orthogonality
- Spectral leakage: guard band, accurate crystals

TELECOMMUNICATION ENGINEERING

Session 6, page 32 Mobile Radio Communications © J.C. Haartsen

Time Division Multiple Access

- Division of time space in (short) time slots
- Digital modulation required
 ⇒ used for second generation, digital systems
- Used in combination with FDMA (MC)
- TDMA/offset-FDD or TDMA/TDD
- User separation by time windows (guard time)

TDMA

Drawbacks:

- Adaptive equalizer required
- Synchronization overhead (including guard times)

Advantages:

- Dynamic slot allocation
- Discontinuous transmission

TELECOMMUNICATION ENGINEERING

Session 6, page 34 **Mobile Radio Communications** © J.C. Haartsen

TDMA burst

Session 6, page 35 Mobile Radio Communications © J.C. Haartsen

TDMA receivers

- User separation by time window
- Time synchronization determines orthogonality
- Time leakage: guard times, time advance

TELECOMMUNICATION ENGINEERING

Session 6, page 36 Mobile Radio Communications © J.C. Haartsen

Code Division Multiple Access

- Division of signal space in codes
- DS-CDMA
 - spreading chip sequence (signature)
 - fading resistant (RAKE)
 - soft capacity (interference diversity)
 - macro diversity

• FH-CDMA

- spreading hop sequence
- near-far resistant (filters)

Drawbacks:

- Power control required
- Synchronization overhead

Advantages:

- Dynamic code allocation
- Interference/frequency diversity

TELECOMMUNICATION ENGINEERING Session 6, page 38 Mobile Radio Communications © J.C. Haartsen

DS-CDMA receivers

- User separation by spreading code
- Synchronization orthogonality
- Cross-correlation leakage

TELECOMMUNICATION ENGINEERING

Session 6, page 39 Mobile Radio Communications © J.C. Haartsen

Capacity

• User data rate *R_b*, spectrum band *W*

TELECOMMUNICATION ENGINEERING Session 6, page 40 Mobile Radio Communications © J.C. Haartsen

Second-order effects

- Interference diversity (soft capacity)
 - DS-CDMA
 - FH-TDMA
- Orthogonality
 - extra guard bands in FDMA
 - synchronization overhead in TDMA and CDMA
- Fading
 - extra link margin FDMA and TDMA
 - RAKE in DS-CDMA
 - Equalizer in TDMA

• Dynamic bandwidth allocation

- multi slots for TDMA
- multi codes for DS-CDMA

TELECOMMUNICATION ENGINEERING

Session 6, page 42 Mobile Radio Communications © J.C. Haartsen

Hybrid systems

• Combination with FDMA (Multi Carrier)

- in almost all cases since $B_{tot} >> W$

- Combination with hopping
 - DS/FH CDMA
 - FH TDMA (TDFH)
- TCDMA
 - TDMA with CDMA
 - avoiding near-far problem
 - Equalizer in TDMA

TELECOMMUNICATION ENGINEERING

Session 6, page 43 Mobile Radio Communications © J.C. Haartsen

Space Division Multiple Access

- Division of space in sectors
- Directional antennas
 - fixed beam antennas
 - adaptive (smart) antennas
- Capacity
 - determined by antenna diagram
 - depends on beam width of main lobe
 - depends on side lobes

• Combination with any other MA technique

SDMA: directional antennas

Session 6, page 45 Mobile Radio Communications © J.C. Haartsen

SDMA: 120° Sectorization

TELECOMMUNICATION ENGINEERING

Session 6, page 46 Mobile Radio Communications © J.C. Haartsen

Packet radio

- Single channel (medium)
- Multiple users access same medium
 - medium access control (MAC)
 - <u>uncoordinated</u>
 - random access
 - contention based
 - collisions
 - <u>coordinated</u>
 - scheduled access
 - contention free (reserved)
 - hybrid (combination of contention and contention-free)
 - push-to-talk

Throughput

- Constant packet length τ seconds
- Fixed data rate
- Random packet generation λ packets/s
- Poisson arrival distribution

$$R = \lambda \cdot \tau$$

$$T_{ch} = \lambda \cdot \tau \cdot \Pr(no \ collision \)$$

$$\Pr(n \ arrivals \ within \ \tau) = \frac{R^{n}e^{-R}}{n!}$$

$$\Pr(0 \ arrivals \ within \ \tau) = e^{-R}$$

TELECOMMUNICATION ENGINEERING Session 6, page 49 Mobile Radio Communications © J.C. Haartsen

ALOHA

Pure ALOHA:

- Random access at any time
- Vulnerable period 2τ
- Collision probability
- Throughput

$$\Pr(0 \text{ arrivals within } 2\tau) = e^{-2R}$$
$$T_{ch} = R \cdot e^{-2R}$$

Slotted ALOHA:

- Random access at slot boundary only
- Vulnerable period τ
- Collision probability
- Throughput

$$\Pr(0 \text{ arrivals within } \tau) = e^{-R}$$
$$T_{ch} = R \cdot e^{-R}$$

TELECOMMUNICATION ENGINEERING

Session 6, page 50 Mobile Radio Communications © J.C. Haartsen

Througput ALOHA

Session 6, page 51 Mobile Radio Communications © J.C. Haartsen

CSMA protocols

Carrier sense:

- Listen to channel
- Retry after random delay

CSMA/CD:

- <u>Collision Detect</u>
- Listen-while-talk
- Not for radio

CSMA/CA:

- <u>Collision Avoidance</u>
- Listen-before-talk

TELECOMMUNICATION ENGINEERING

Session 6, page 52 Mobile Radio Communications © J.C. Haartsen

FOR NEXT TIME

- Read: Chapter 9: §9.1-9.5, 9.7, 9.8, 9.10 Articles: HIPERLAN type 2 IEEE 802.11 WLAN
- Solve problems:

Chapter 5: 5.18, 5.20 Chapter 8: 8.1, 8.2, 8.3, 8.7, 8.8, 8.12, 8.13

TELECOMMUNICATION ENGINEERING

Session 6, page 53 Mobile Radio Communications © J.C. Haartsen

