### **Mobile Radio Communications**

**Session 7: Wireless networks & WLANs** 



Session 7, page 1 Mobile Radio Communications © J.C. Haartsen



### **Backbone network**





Session 7, page 2 Mobile Radio Communications © J.C. Haartsen



# Public switched telephone network (PSTN)



# **Signaling formats**

PCM (8 ks/s, 8b/sample, logPCM, μ-law/A-law)
TDM

|                       | signal level | bit rate     | voice circuits | carrier system |
|-----------------------|--------------|--------------|----------------|----------------|
| US/Japan              | DS-0         | 64 kb/s      | 1              |                |
|                       | DS-1         | 1.544 Mb/s   | 24             | <b>T-1</b>     |
|                       | DS-1C        | 3.152 Mb/s   | 48             | T-1C           |
|                       | DS-2         | 6.312 Mb/s   | 96             | T-2            |
|                       | DS-3         | 44.736Mb/s   | 672            | T-3            |
|                       | DS-4         | 274.176 Mb/s | 4032           | T-4            |
|                       | 0            | 64 kb/s      | 1              |                |
| Europe<br>(CEPT&PTTs) | 1            | 2.048 Mb/s   | 30             | E-1            |
|                       | 2            | 8.448 Mb/s   | 120            | E-1C           |
|                       | 3            | 34.368 Mb/s  | 480            | E-2            |
|                       | 4            | 139.264 Mb/s | 1920           | E-3            |
| `                     | 5            | 565.148 Mb/s | 7680           | E-4            |



TELECOMMUNICATION ENGINEERING

Session 7, page 4 Mobile Radio Communications © J.C. Haartsen



# **Traffic routing**

- Real-time information (voice/video)
- Non real-time information (data)
- Priority delivery
- Best effort delivery

#### <u>Connection-oriented services</u>

- single, (virtual) path
- call set-up procedure
- delivery in sequence order

#### <u>Connectionless services</u>

- different paths (datagram)
- always on-line
- delivery order not guaranteed

TELECOMMUNICATION ENGINEERING

Session 7, page 5 Mobile Radio Communications © J.C. Haartsen



### **Traffic routing**

**Connection-oriented service** 



#### **Connectionless service**



TELECOMMUNICATION ENGINEERING

Session 7, page 6 Mobile Radio Communications © J.C. Haartsen



# **Circuit switching**

- Reserved circuits
- Constant bandwidth
- Connection-oriented
- Telephony paradigm





Session 7, page 7 Mobile Radio Communications © J.C. Haartsen



### **Packet switching**

- Packet transmission
- Variable bandwidth
- Connection-oriented (ATM) or connectionless
- Data paradigm



# **Routing and switching**

|                     | circuit | packet   |
|---------------------|---------|----------|
| Connection-oriented | PSTN    | ATM      |
| Connectionless      |         | Ethernet |
|                     |         |          |



Session 7, page 9 Mobile Radio Communications © J.C. Haartsen



# **Connectionless packet data**





Session 7, page 10 Mobile Radio Communications © J.C. Haartsen



# **Fixed line protocols**

- **PSTN** (or POTS: <u>Plain Old Telephone Service</u>)
- **ISDN** (Integrated Services Digital Network)
  - B-channels (64 kb/s)
  - D-channels (16 kb/s for BRI, 64 kb/s for PRI)
  - Basic Rate Interface: 2B+D
  - Primary Rate Interface: 23B+D (US/Japan) or 30B+D (Europe)
- ATM (<u>A</u>synchronous <u>T</u>ransfer <u>M</u>ode)
  - ATM cells: 53 bytes (5-byte header, 48-byte payload)
  - connection-oriented (virtual circuit), routing labels





# **Common channel signaling**

- Separate signaling traffic (control) from user traffic
- out-of-band signaling
- Signaling System No.7 (SS7)



# **Mobile switching system**

- Mobility
- Routing
- Resource allocation
- Billing



# **Mobile switching system**

- GPRS: General Packet Radio System
- SGSN: Serving GPRS Support Node
- GGSN: Gateway GPRS Support Node



# **Packet radio**

- Single channel (medium)
- Multiple users access same medium
  - medium access control (MAC)
  - <u>uncoordinated</u>
    - random access
    - contention based
    - collisions
  - <u>coordinated</u>
    - scheduled access
    - contention free (reserved)
  - hybrid (combination of contention and contention-free)
  - push-to-talk



# Throughput



- Constant packet length  $\tau$  seconds
- Fixed data rate
- Random packet generation  $\lambda$  packets/s
- Poisson arrival distribution

$$R = \lambda \cdot \tau$$
  

$$T_{ch} = \lambda \cdot \tau \cdot \Pr(no \ collision)$$
  

$$\Pr(n \ arrivals \ within \ \tau) = \frac{R^{n}e^{-R}}{n!}$$
  

$$\Pr(0 \ arrivals \ within \ \tau) = e^{-R}$$



TELECOMMUNICATION ENGINEERING Session 7, page 16 Mobile Radio Communications © J.C. Haartsen



# ALOHA

#### **Pure ALOHA:**

- Random access at any time
- Vulnerable period  $2\tau$
- Collision probability
- Throughput

$$\Pr(0 \text{ arrivals within } 2\tau) = e^{-2R}$$
$$T_{ch} = R \cdot e^{-2R}$$

#### **Slotted ALOHA:**

- Random access at slot boundary only
- Vulnerable period  $\tau$
- Collision probability
- Throughput

$$\Pr(0 \text{ arrivals within } \tau) = e^{-R}$$
$$T_{ch} = R \cdot e^{-R}$$



TELECOMMUNICATION ENGINEERING

Session 7, page 17 Mobile Radio Communications © J.C. Haartsen



### **Througput ALOHA**





Session 7, page 18 Mobile Radio Communications © J.C. Haartsen



# **CSMA protocols**

#### **Carrier sense:**

- Listen to channel
- Retry after random delay

#### CSMA/CD:

- <u>Collision Detect</u>
- Listen-while-talk
- Not for radio

#### CSMA/CA:

- <u>Collision Avoidance</u>
- Listen-before-talk







#### **Carrier sense, collision aviodance:**

- Listen to channel
- If busy, retry after random delay





Session 7, page 20 Mobile Radio Communications © J.C. Haartsen



### **Wireless extensions**



#### • LAN: WLANs

- Ethernet: 802.11 WLAN
- ATM: HIPERLAN/2





TELECOMMUNICATION ENGINEERING Session 7, page 21 Mobile Radio Communications © J.C. Haartsen



# WLAN IEEE 802.11

- PHY and MAC description
- PHY:
  - Infrared
  - Frequency-Hop Spread-Spectrum (FHSS)
  - Direct-Sequence Spread-Spectrum (DSSS)
- Three flavours
  - 802.11
     802.11b
     802.11b
     802.11a
    2.4 GHz, 1-2 Mb/s
    2.4 GHz, 11 Mb/s
    5 GHz, 20<sup>+</sup> Mb/s
- Developed under IEEE 802



TELECOMMUNICATION ENGINEERING

Session 7, page 22 Mobile Radio Communications © J.C. Haartsen



### **Architecture**

- Extended Service Set (ESS)
- Backbone: Ethernet, token ring, token bus



# **Physical layer**

- Radio band 2400 2483.5 MHz, Industrial-Scientific-Medical (ISM) <u>unlicensed</u> band
  - FH spread spectrum
    - 79 hop frequencies, 1 MHz spacing
    - 2-level GFSK (1 Mb/s) and 4-level GFSK (2 Mb/s)
    - 3 hop sets, each set with 26 sequences of 79 hops

#### • DS spread spectrum

- DBPSK (1 Mb/s) and DQPSK (2Mb/s)
- 11-chip Barker spreading code
- 11 MHz wide channels (MC)
- 2 channels per BSS
- Wavelenghts 850-950nm
  - Infrared

- Pulse Position Modulation

TELECOMMUNICATION ENGINEERING

Session 7, page 24 Mobile Radio Communications © J.C. Haartsen



### **Medium access control layer**

- Channel access
- Addressing
- Frame formatting
- Error checking
- Fragmentation/re-assembly



Session 7, page 25 Mobile Radio Communications © J.C. Haartsen



# **Channel access**

#### • Packet radio

- multi-carrier ESS
- single channel per BSS

#### • Distributed control (DCF)

- best effort services
- CSMA/CA

#### • Centralized control (PCF)

- Priority delivery
- Point coordinator (AP)
- Polling scheme

TELECOMMUNICATION ENGINEERING

Session 7, page 26 Mobile Radio Communications © J.C. Haartsen



# **MAC frame**

| CTRL | DURATION | ADDRESS | PAYLOAD | FCS |
|------|----------|---------|---------|-----|
|      |          |         |         |     |

- CTRL
  - type, direction, mode, etc.
- Duration
  - time duration of transaction (NAV update, virtual carrier sense)
- Address
  - source & destination
- Payload
  - MAC protocol data unit (MPDU)
- FCS
  - CRC



Session 7, page 27 Mobile Radio Communications © J.C. Haartsen



### **DCF data transaction**



stop-and-wait ARQ



Session 7, page 28 Mobile Radio Communications © J.C. Haartsen



### Hidden node problem

- STA\_C hears STA\_B, but not does not hear STA\_A
- RTS/CTS reserves channel in area around A and B





Session 7, page 29 Mobile Radio Communications © J.C. Haartsen



### **DCF data transaction**





Session 7, page 30 Mobile Radio Communications © J.C. Haartsen



### Fragmentation



### **PCF data transaction**



- Beacons sent by AP
- Contention-free-period:
  - Polling
  - PIFS
  - priority data



Session 7, page 32 Mobile Radio Communications © J.C. Haartsen



### HIPERLAN

- <u>HIgh PE</u>rformance <u>Radio Local Area Network</u>
- System description (including mobility)
- Hot-spot fill for cellular
- Two flavours
  - type 1 similar to 802.11
    type 2 cellular based
- Developed under ETSI BRAN



TELECOMMUNICATION ENGINEERING

Session 7, page 33 Mobile Radio Communications © J.C. Haartsen



### **Architecture**

- Cellular network topologyBackbone: originally ATM



# **Physical layer**

• 5150 - 5300 MHz and 5470 - 5725 MHz, <u>license-exempt</u> band

#### • TDMA/TDD

- MAC frames
- uplink/downlink slots
- Multi Carrier
  - 20 MHz spacing

#### • Orthogonal Frequency Division Multiplexing (OFDM)

- 52 subcarriers
- 312.5 kHz spacing
- 800ns cyclic prefix







- **1. Serial-to-parallel conversion**
- 2. Send in parallel each bit on narrowband subcarrier
- **3. Keep subcarriers orthogonal**
- 4. Demodulate each subcarrier separately and retrieve bits
- 5. Parallel-to-serial conversion



TELECOMMUNICATION ENGINEERING

Session 7, page 36 Mobile Radio Communications © J.C. Haartsen



### **Parallel transmission**





Session 7, page 37 Mobile Radio Communications © J.C. Haartsen



### Orthogonality

$$\int_{0}^{T} \phi_{i}(t) \cdot \phi_{j}(t) dt = \frac{1}{0} \quad \text{if } i = j \\ 0 \quad \text{if } i \neq j$$

Choose  $\phi(t)$  to be  $\cos(k \cdot \omega_0 \cdot t)$  and  $\sin(k \cdot \omega_0 \cdot t)$ 

$$\frac{1}{T_s} \int_{0}^{T_s} \cos\left(2\pi \cdot k \, \frac{t}{T_s}\right) \cdot \cos\left(2\pi \cdot n \, \frac{t}{T_s}\right) dt = \begin{cases} 1 & \text{if } n = k \\ 0 & \text{if } n \neq k \end{cases}$$

#### Mapping is **Fourier transform**



TELECOMMUNICATION ENGINEERING

Session 7, page 38 Mobile Radio Communications © J.C. Haartsen



### OFDM





 $b_i \rightarrow I_i \cos(k\omega_0 t) + Q_i \sin(k\omega_0 t)$ any from BPSK to 64QAM

TELECOMMUNICATION

Session 7, page 39 Mobile Radio Communications © J.C. Haartsen



### **Fast Fourier transforms**





Session 7, page 40 Mobile Radio Communications © J.C. Haartsen



### **Multipath resistant**

• Long symbol time (narrowband subband)



# **Cyclic prefix**

- 800ns prefix  $\Rightarrow$  250ns  $T_{rms}$
- orthogonal within  $T_s$



### **HIPERLAN/2 OFDM**

- 64-point FFT
- 312.5kHz subcarrier spacing
- 20 MHz carrier spacing

- 48 data subcarriers
- 4 pilot subcarrier
- 12 guard subcarriers



### **HIPERLAN/2** rates

- Subcarrier modulation BPSK/QPSK/16QAM/64QAM
- Coding, convolutional 1/2, 3/4, 9/16 rates, constraint length 7

Example:Subcarrier spacing = 312.5kHz $T_s = 3.2 \mu s$ prefix 800ns:  $T_s' = 4 \mu s$ Effective rate/subcarrier = 250ks/s48 subcarriers  $\Rightarrow 12$  Ms/s gross rate

QPSK, 3/4-rate convolutional code  $\Rightarrow$ data rate = 12Msym/s × 2b/sym × 3/4 = **18Mb/s** 



ELECOMMUNICATION ENGINEERING

Session 7, page 44 Mobile Radio Communications © J.C. Haartsen



### **HIPERLAN/2** rates

| mode | modulation | code rate | data rate (Mb/s) |
|------|------------|-----------|------------------|
| 1    | BPSK       | 1/2       | 6                |
| 2    | BPSK       | 3/4       | 9                |
| 3    | QPSK       | 1/2       | 12               |
| 4    | QPSK       | 3/4       | 18               |
| 5    | 16QAM      | 9/16      | 27               |
| 6    | 16QAM      | 3/4       | 36               |
| 7    | 64QAM      | 3/4       | 54               |



TELECOMMUNICATION ENGINEERING Session 7, page 45 Mobile Radio Communications © J.C. Haartsen



### **MAC frame structure**

- Fixed-length MAC frames
- AP controls traffic flows (including in direct mode)



# **DLC layer**

#### • Control

- BCH: broadcast information (radio resource control)
- FCH: frame information: allocation of downlink/uplink/RCH
- ACH: access feedback control for MT requests
- RCH: random access, contention based
- SCH: short transport channel for control in payload

#### • Traffic

- SCH: long transport channel for uplink/downlink user data

#### • Downlink

- data from AP to MTs
- BCH/FCH/ACH
- Uplink
  - data from MTs to AP
  - RCH



Session 7, page 47 Mobile Radio Communications © J.C. Haartsen



# **Channel allocation**

#### • Downlink

- Scheduling by AP
- allocation of downlink SCH/LCH by AP

#### • Uplink

- <u>MT initiated</u> (contention based):
  - 1. RCH  $\rightarrow$  ACH/FCH
  - 2. Allocation of uplink SCH/LCH by AP
- <u>AP initiated</u> (contention free):
  - 1. Polling of MT by AP
  - 2. Return request SCH by MT
  - 3. Allocation of uplink SCH/LCH by AP

#### • Allocation

- indicated in FCH



TELECOMMUNICATION ENGINEERING

Session 7, page 48 Mobile Radio Communications © J.C. Haartsen



# **Radio network functions**

#### • Dynamic frequency selection (DFS)

- uncoordinated selection of OFDM carrier
- interference measurements in AP and MT

#### Link adaptation

- changing coding scheme
- changing modulation scheme
- Power control
- Quality of service
  - synchronous/isochronous services
  - polling by AP



Session 7, page 49 Mobile Radio Communications © J.C. Haartsen



### FOR NEXT TIME

• Read:

Chapter 10: §10.1-10.4 (not 10.1.4), 10.12

• Solve problems: Chapter 9: none



Session 7, page 50 Mobile Radio Communications © J.C. Haartsen

