

Repeater Site Survey

Site: Sandhamn

System: GSM900

1.0 Scope

The site is an island called Sandhamn (Sand Harbor). The island is very famous for it's marine harbor and is crowded with tourists and boaters during the summer months. The entire population of the island is about 60, which means during the winter months the amount of traffic is extremely low.

A repeater site seemed to be a feasible solution considering the financial aspect for a BTS and the low traffic period during 6 months of wintertime.

The scope was to cover the marine harbor and the surrounding area.

2.0 Site description

The island is quite flat but unfortuantely the marine habor is located behind a hilly, forest terrain, which causes a shadowed area. The BTS located on the mainland is situated so that it is not in the line of sight of the marine harbor.

The island has a marine rescue radio communication center located on the hightest point on the island, which has a suitable tower for their antennas. This tower could also be used for the repeater site. The tower is located in such a way that the donor antenna and the mobile antenna could be placed back to back 180°

Fig 1. The tower with both antennas

Prior to the addition of the repeater, the site has following data:

Received signal from the BTS:	> -46dBm
Signal in the marine habour:	< -98 dBm
Distance to the BTS:	0.6-1.2' (1-2 km)
Timing advance:	2
BER (without repeater):	0
Distance to the marine harbour:	0.6-1.2' (1-2 km)
Height from ground level: Donor antenna:	49.2' (15 m)
Height from ground level: Service antenna:	72.2' (22 m)
Feeder to Donor antenna RG214	49.2' (15 m)
Feeder to service antenna RG214	65.6' (20 m)
Distance between the enternance	10 12 (Em) vertical
Distance between the antennas:	16.4' (5 m) vertical
	4.6' (1.4 m) horizontal

Tower type : Approx. 180.5' (55 m) high, triangle type, 4.9' (1.5 m) wide.

Fig 2. The view towards the BTS

Channelselec	tive config	uration c	hannel 1-4 (GSM)	×
<u>C</u> ombiner a	ttenuation				
Uplink	0	dB	Downlink	0	dB
<u>M</u> ax chann	el power		<u>I</u> nput attenu	ation	
Uplink	-	dBm	Uplink	0 dB	•
Downlink	-	dBm	Downlink	0 dB	•
Channels	Cha <u>n</u> nel	Dow	vnlink	Uplink	
Active:	number:	CHAI	# Gain(dB)		Gain(dB)
🖌 On	116	1:1	76	3:1	74 🔳
🖌 On	102	1:2	76	3:2	74
- 88	0	2:1	0	4:1	0
🗌 O11	0	2:2	0	4:2	0
1					
<u>U</u> pdate	. 🗙	Cancel	Ch <u>5</u> 8	8	🕐 Help

Fig 3. OMT window, channel and gain settings

3.0 Antenna selected for the site

The following conditions must be considered:

The donor and the service antenna are mounted on the same tower. This could cause antenna isolation problems, but if the link budget is carefully studied, and antennas with a narrow opening angle and good F/B ratio are used, this can be handled easily. The distance between the antennas, both vertically and horizontally, as well as the gain setting, are also important factors to consider.

It is a short distance to the marine harbor. The downtilt of the service antenna is decided to avoid interference and concentrate the radiated energy towards the marine harbour. (Approx: 6° downtilt mechanically)

On this site, high gain antennas are not really needed for maximizing the output power in uplink and downlink, but probably could be used to compensate for the feeder losses. Cable type RG214 was used.

Antenna type:	Gain:	F/B	Hbw	Vbw	Side Iobe
Donor antenna Type: City Product number: 7143.38	18,0 dBi	> 30 dB	65°	7°	> 17 dB
Service antenna Type: City Product number: 7143.38	18,0 dBi	> 30 dB	65°	7°	> 17 dB

The same type of antenna are used both for the donor and the service antenna.

4.0 Link budget

Downlink:

The calculated link budget for the downlink path is as follows:

EIRP from the BTS site	43 dBm
Path loss	-93 dB
Antenna gain	18 dBi
Feeder loss (15 meter of RG214)	-3 dB
Repeater input	-35 dBm
Repeater downlink gain setting	76 dB
Repeater output power	30 dBm
Feeder loss (RG214/XXdb_100m)	-4 dB
Antenna gain	18 dB
EIRP repeater downlink	44 dBm
Path loss	-90 dB
MS input level	-46 dBm
Fading margin	-20 dB
Received signal at mobile	-66 dBm

Fig. 4. Link budget Downlink from the BTS > repeater > MS

Uplink:

MS output power	33 dBm
Antenna gain	0 dBi
Path loss	-90 dB
Antenna gain	18 dBi
Feeder loss (RG214/XXdb_100m)	-4 dB
Repeater input	-43 dBm
Repeater uplink gain	74 dB
Repeater output power	30 dBm
Feeder loss (RG214/XXdb_100m)	-4 dB
Antenna gain	18 dBi
EIRP repeater Uplink	44 dBm
Path loss	-93 dB
Fading margin	-20 dB
Received signal at BTS	-69 dBm

Fig 5. Link budget uplink from the MS > repeater > BTS

Allgon Confidential Proprietary Information. Subject to change without notice.

Status	×
Common status:	Input attenuation Alarm level Uplink: 0 dB NONE Downlink: 0 dB
Select GSM channel: 1:116 2:102	
Specific status: Active GS	M channel 116 Mode OPERATE
Downlink Uplink	Downlink Uplink
Gain set to76dB74dBControl to76dB74dBUsed gain76dB74dB	RSSI max -38 dBm -81 dBm
🖌 ок	2 Help

Fig. 6. OMT window, RSSI measures and antenna isolation test

5.0 Result

6.0 References