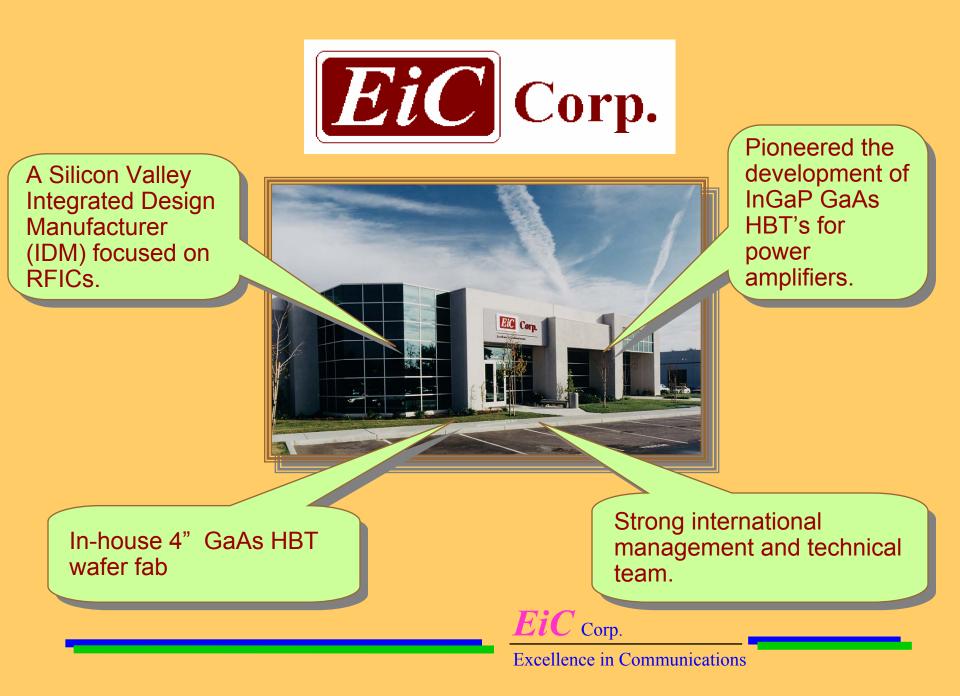


### **Excellence** in Communications

**Product Overview** 


June 2002





- Company background & Contact Info
  - Slides 3-5
- Technology
  - Slides 6-13
- Broadband Gain Block Amplifiers
  - Slides 14-28
- Power Amplifier Modules
  - Slides 29-50





## **Our Market Focus**

- Broadband Infrastructure Applications
  - Wireless Communications
  - Optical Fiber Communications
  - Cable TV
- Cellular Handset Applications
  - CDMA → CDMA 1X → cdma2000 / WCDMA
  - GSM → GPRS → WCDMA



# **Contact EIC Corporation**

#### EIC Corp Headquarters

- Fremont, CA. Main no. (510) 979 8999
   Sales no. (510) 979 8953; fax (510) 979 8902
- www.eiccorp.com sales@eiccorp.com
- To locate our **Representatives**...refer to EIC Web Site
- Distributed in Asia and America's by
  - (866) AVNET RF www.avnetrf.com
- Distributed in Europe by
  - (44) 1908 326 326
  - www.bfioptilas.avnet.com
  - RFsales.UK@bfioptilas.avnet.com





## InGaP HBT Technology



## **Enabling Technologies for RFICs**

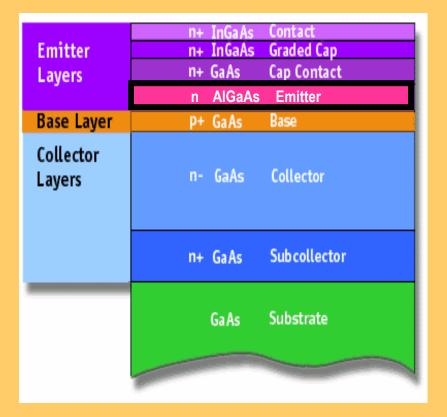
| Performance                                     | GaAs<br>HBT | GaAs<br>PHEMT | Si<br>Bipolar | RF<br>CMOS   | SiGe<br>HBT  |
|-------------------------------------------------|-------------|---------------|---------------|--------------|--------------|
| High breakdown voltage<br>for RF power Circuits | High        | High          | Low           | Low          | Low          |
| RF Power Efficiency                             | High        | High          | Low           | Very Low     | Low          |
| Single Supply                                   | Yes         | No            | Yes           | Yes          | Yes          |
| Linearity                                       | High        | High          | Medium        | Low          | Medium       |
| RF Front-end Chip Set                           | Fair        | Fair          | Good          | Very<br>Good | Very<br>Good |
| Cost                                            | Medium      | High          | Low           | Low          | Medium       |

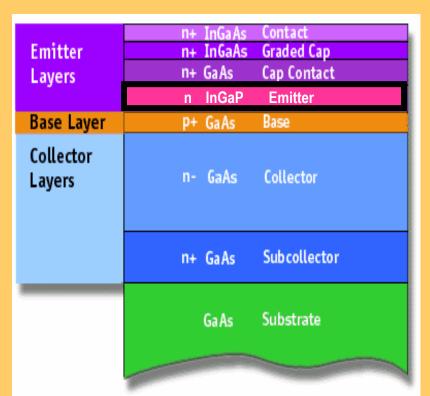
•InGaP/GaAs HBT: Best technology for high performance and highest reliability, medium to higher power amplifiers !!

EiC Corp

### InGaP VERSUS AlGaAs HBTs

#### AIGaAs HBT


#### InGaP HBT (EiC Leadership)


- Mature Technology in Production for a Number of Years
- Widely Accepted in the Field
- More Epi-wafer Suppliers
- More Reliability Data; less reliable

- Proven Technology in Production
- Better Reliability
- Higher Current Handling
- Smaller Die Size
- Better Temperature Stability
- Lower Turn-on Voltage
- Constant Current Gain over Decades of Collector Current
- Better Manufacturability
- Lower Phase Noise in Oscillators

EiC Corp.

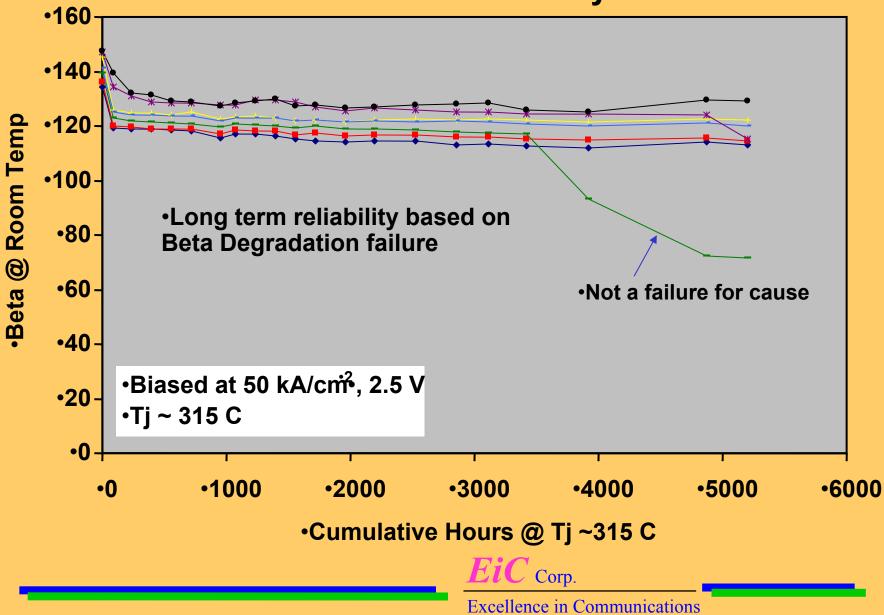
# **HBT Epi Structures**



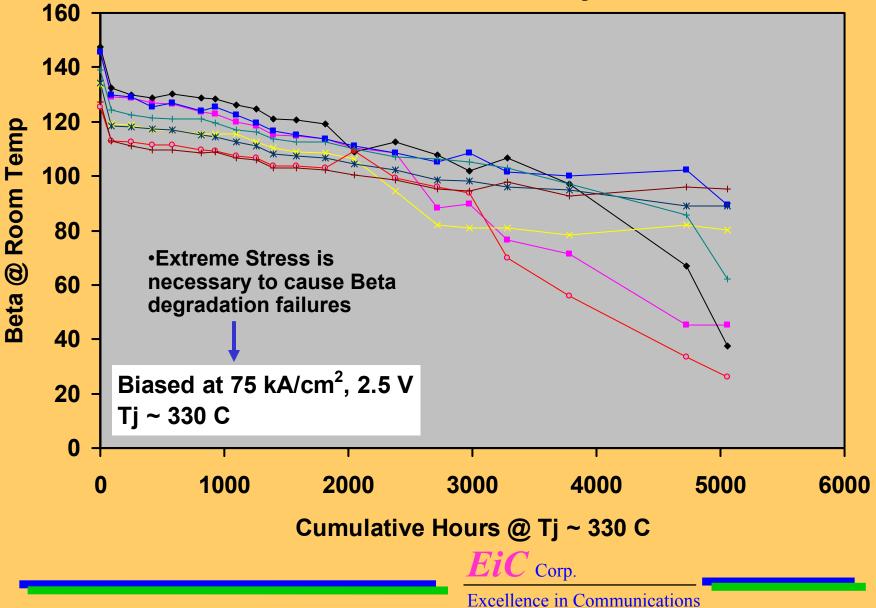


#### **AIGaAs/GaAs HBT**

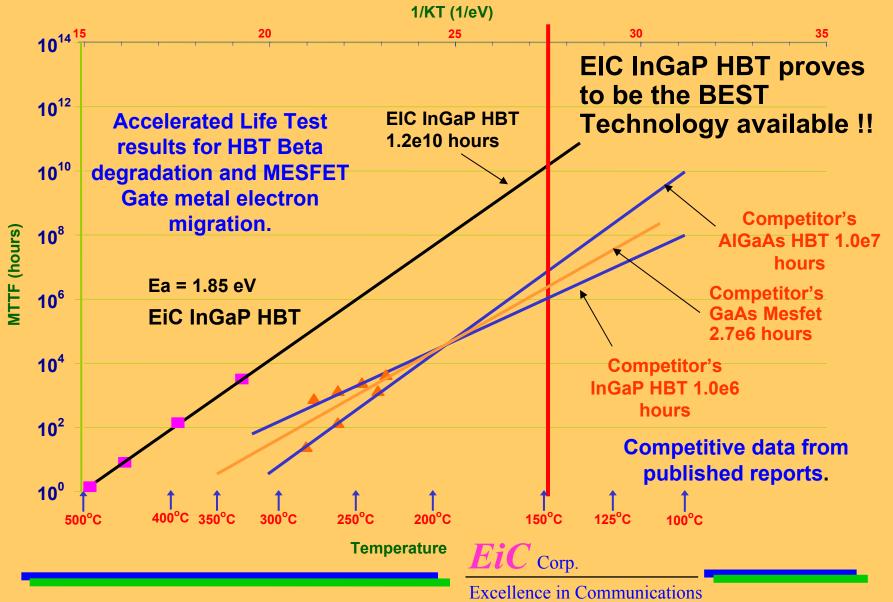
#### InGaP/GaAs HBT


EiC Corp.

## InGaP/GaAs Advantages


- InGaP emitter forms better E/B junction
  - Better lattice structure; less defects than AlGaAs
  - Higher current handling
- MOCVD for epitaxial growth
  - <u>Molecular Organic Chemical Vapor Deposition</u>
  - Low temperature process allows for Carbon doped base for stability over temperature and current
- All this adds up to the most RELIABLE and LOWEST COST solution




#### InGaP HBT Reliability

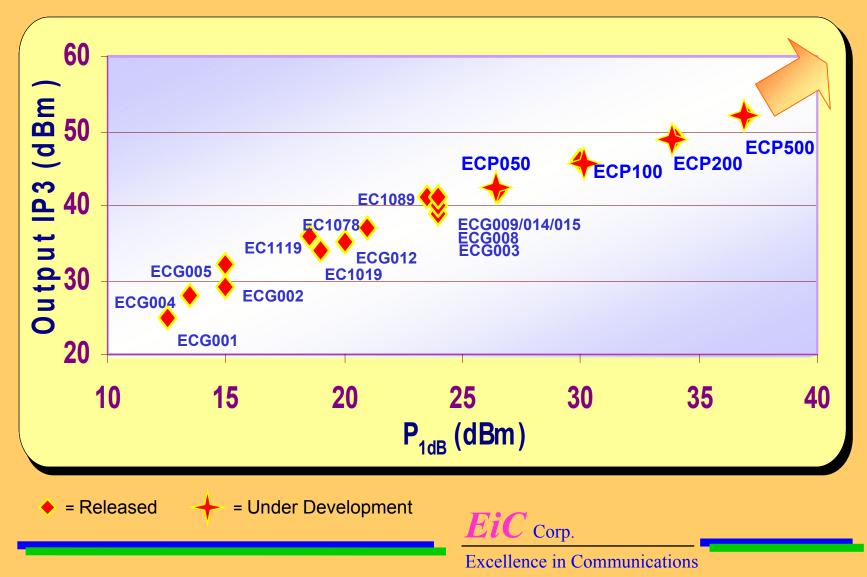


#### InGaP HBT Reliability



#### **RELIABILITY ADVANTAGE (MTTF)**




# Broadband Amplifiers for Infrastructures



## **Leadership Products**

- EiC supplies gain block, broad band amplifier IC's, to major base station infrastructure manufacturers
- Cellular base station applications demand superior reliability and performance
- Infrastructure Broadband Amplifiers based on EiC's proprietary InGaP/GaAs HBT technology provide:
  - The Best Linearity (critical for 3G)
  - The Best Reliability (>1000X better than competition)
- EiC's Broadband Amplifiers being shipped to Primary base station suppliers today

## **EiC Gain Block Product Evolution**

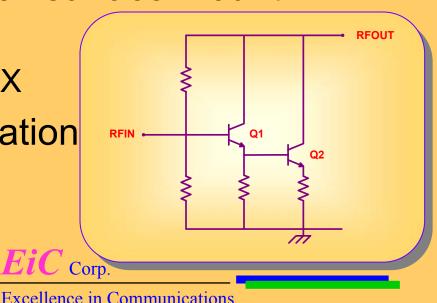


## **EiC's Gain Block Selection**

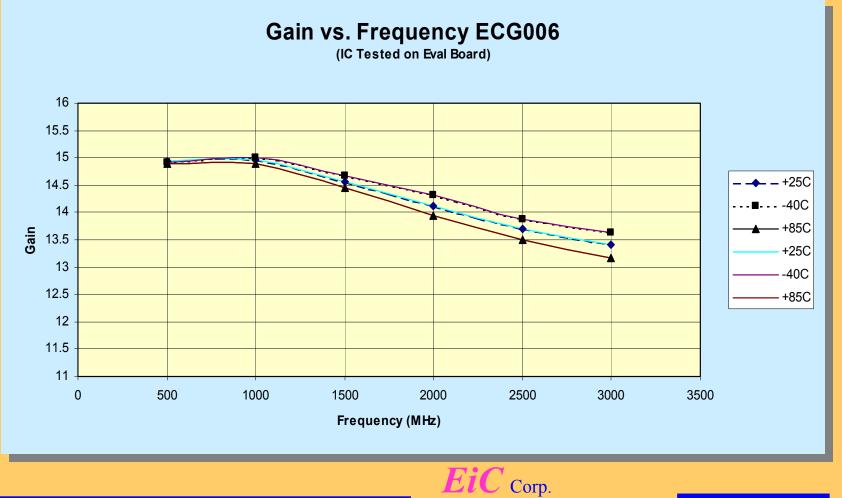
| Broadband Linear<br>Amplifier                | Small<br>Signal<br>Gain (dB) | Noise<br>Figure<br>(dB) | Output<br>P1dB<br>(dBm) | Output<br>IP3<br>(dBm) | Input<br>Return<br>Loss<br>(dB) | Output<br>Return<br>Loss<br>(dB) | ∆Tj  | BW<br>{MHz} | Vde<br>(V) | Icc<br>(mA) | Package |
|----------------------------------------------|------------------------------|-------------------------|-------------------------|------------------------|---------------------------------|----------------------------------|------|-------------|------------|-------------|---------|
| ECG014                                       | 20.5                         | 5.0                     | 24.0                    | 42                     | 15                              | 10                               | 45°C | 50-2000     | 5.0        | 100         | В       |
| ECG015*                                      | 15.0                         | 5.0                     | 24.0                    | 41                     | 15                              | 10                               | 45°C | 1800-2500   | 5.0        | 100         | В       |
| ECG009                                       | 19.0                         | 5.1                     | 24.0                    | 41                     | 15                              | 10                               | 65°C | DC-3000     | 5.0        | 150         | В       |
| ECG003                                       | 20.0                         | 3.5                     | 24.0                    | 39                     | 12                              | 12                               | 45°C | DC-6000     | 7.2        | 110         | В       |
| EC-1089                                      | 15.0                         | 5.1                     | 23.5                    | 42                     | 15                              | 10                               | 65°C | DC-2500     | 5.0        | 150         | В       |
| ECG008                                       | 15.0                         | 5.0                     | 23.0                    | 40                     | 15                              | 10                               | 75°C | DC-6000     | 7.3        | 120         | В       |
| EC-1078                                      | 19.5                         | 4.4                     | 21.0                    | 37                     | 12                              | 8                                | 65°C | DC-6000     | 6.0        | 96          | B.C     |
| ECG012                                       | 14.0                         | 5.1                     | 20.0                    | 36                     | 15                              | 10                               | 65°C | DC-2500     | 3.0        | 100         | В       |
| EC-1019                                      | 18.5                         | 5.0                     | 19.0                    | 34                     | 19                              | 15                               | 45°C | DC-6000     | 5.0        | 70          | B.C     |
| EC-1119                                      | 14.8                         | 5.5                     | 18.6                    | 36                     | 20                              | 24                               | 60°C | DC-6000     | 4.8        | 80          | B.C     |
| ECG005*                                      | 18.5                         | 4.3                     | 18.5                    | 33                     | 16                              | 15                               | 40°C | DC-6000     | 4.8        | 65          | B.C     |
| ECG002                                       | 20.0                         | 4.0                     | 15.0                    | 29                     | 15                              | 15                               | 23°C | DC-6000     | 3.9        | 45          | B,C,F   |
| ECG006                                       | 15.0                         | 4.0                     | 15.0                    | 32                     | 15                              | 15                               | 23°C | DC-6000     | 3.9        | 45          | B,C,F   |
| ECG001                                       | 20.0                         | 3.8                     | 12.0                    | 26                     | 15                              | 15                               | 17°C | DC-6000     | 3.4        | 30          | B,C,F   |
| ECG004*                                      | 15.0                         | 3.0                     | 12.0                    | 26                     | 15                              | 15                               | 17°C | DC-6000     | 3.4        | 35          | B,C,F   |
| *Data taken at 2 GHz All other data at 1 GHz |                              |                         |                         |                        |                                 |                                  |      |             |            |             |         |

PACKAGE CODES: B: SOT89 C: Micro X

Note: High Linearity

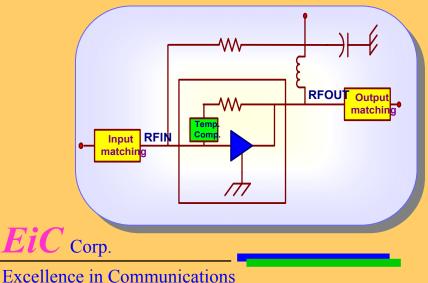

ity Darlington

**DES:** B: SO189 C: Micro X F: SOT363 G: SOIC8 H: LCC


EiC Corp.

### **EiC Darlington Amplifier Features**

- 50 ohm input/output internal matched MMIC
- Easy to use functional blocks
- Available in several small surface mount plastic packages
  - SOT363, SOT89, micro-X
- Very broad band application
   DC to 6GHz




## **Gain Stability - Darlington**



### **EiC High Linearity Amplifiers Features**

- Require external matching circuit to each frequency bands of interest
- High linearity with OIP3 >40dBm (min.)
- Typical S<sub>11</sub><-15dB with external PCB matching circuit</li>
- Low thermal resistance
- SOT89 package



## EC1089 / ECG009

#### Common Features

- Can directly connect to 5V supply
- Icc=150mA (typical)
- P1dB~24dBm
- Optimized performance with external matching circuits for each band
- On chip temperature compensated bias circuit

#### Product Differentiation

- Gain @900MHz
  - EC1089:15dB
  - ECG009:19dB
- Gain @1.9GHz
  - EC1089: 13dB
  - ECG009: 14dB
- Gain @2.14GHz
  - EC1089: 12dB
  - ECG009: 13.5dB

EiC Corp

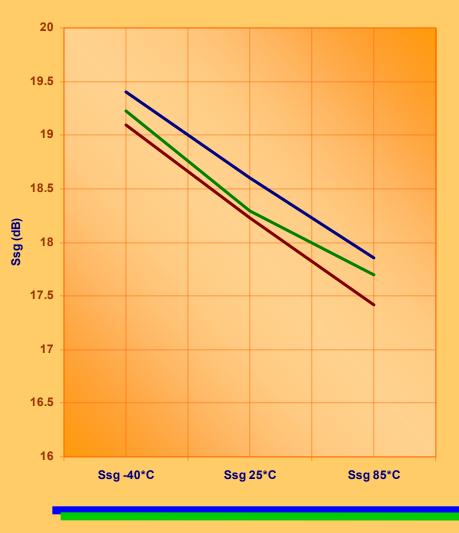
# ECG014 / ECG015

#### Common Features

- Allow Vcc>8V operation with a bias resistor
- Low current, Icc~100mA (typical)
- P1dB~24dBm
- Optimize performance with external matching circuits for each band
- Stable gain over all operating temperature range

#### Product Differentiation

- Different frequency band of application
  - ECG014: 50MHz -1.9GHz
  - ECG015: 1.8GHz -2.5GHz
- Gain
  - ECG014: 20dB @900MHz 15dB @1900MHz
  - ECG015


     15.5dB @1900MHz
     15dB @2140MHz
     14dB @2450MHz

EiC Corp.

#### **EVG014 Gain vs. Temperature**

#### 3 Eval boards at 1.9GHz

#### 3 Eval boards at 900MHz





### **EC1019 Gain SPC Distribution**

EC1019 Gain @ 3GHz



EiC Corp.

## Benefits of EiC's Gain Block Amplifiers

- Leading-edge performance (Linearity, Temperature Stability, Robustness)
- A complete product family
- Consistent and tight performance distribution
- Consistent quality and delivery from in-house fab
- Good part traceability
  - Wafer fab process lot and package lot numbers are coded on all package marking
  - In-house wafer PCM / final testing SPC data are available for failure analysis
- High reliability EiC InGaP HBT technology
- Low junction temperature through thermal design

EIC Corp.

# IPA Intermediate Power Amplifier Coming Soon



## **IPA's Key Features**

- Temperature compensated bias circuit is included
- Class A / Class AB bias can be selected
- Surface mount package
- High P1dB at –45dBc ACPR…linear operation
- EiC InGaP HBT reliability



### Intermediate Power Amplifier Target Performance

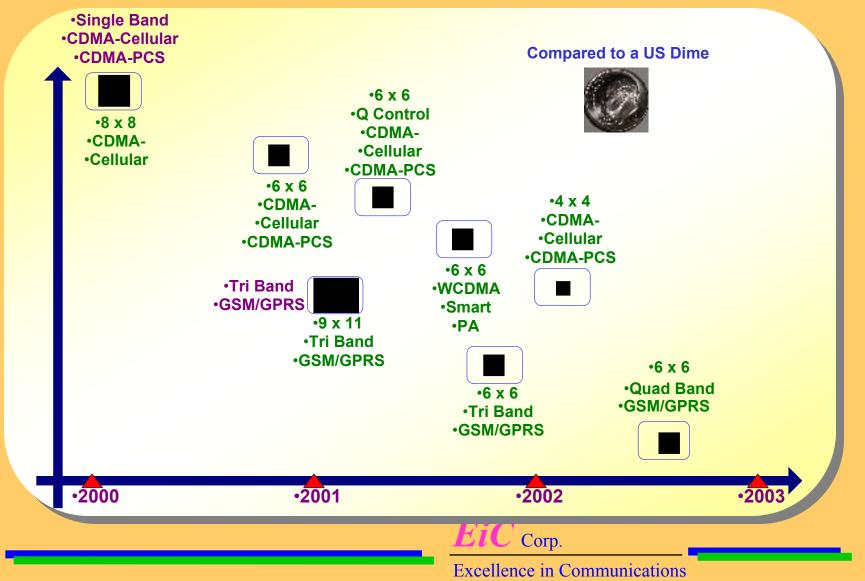
- One Stage amplifiers
- Adjustable Current feature
- SOIC-8 or 4x4 mm LCC package

|                       | 0.5 watt      | 1-watt       | 1-watt        |  |
|-----------------------|---------------|--------------|---------------|--|
|                       | 1800-2300 MHz | 800-1000 MHz | 1800-2300 MHz |  |
|                       | ECP050        | ECP102       | ECP100        |  |
| P-1(dBm)              | 27            | 30           | 30            |  |
| Gain(dB)              | 13            | 15           | 12            |  |
| Pout(ACPR=-45dBC)     | 18.0          | 22.5         | 21.0          |  |
| Gain Flatness/200MHz  | ±0.2dB        | ±0.2dB       | ±0.2dB        |  |
| Phase Flatness/200MHz | ±0.7°         | ±1.2°        | ±1.2°         |  |
| S11 (dB)              | -15           | -15          | -15           |  |
| Vcc (V)               | 5             | 5            | 5             |  |
| lop(mA)               | 250           | 400          | 400           |  |
| OIP3(dBm)             | 42            | 45           | 45            |  |
| NF(dB)                | 6.5           | 7.5          | 7.0           |  |



# Power Modules for 2G & 2.5G Cellular Handset




## **PAM Product Families**

|                                 | Cellular |        |        | PCS     |                    | DCS    | WCDMA   | Size     |
|---------------------------------|----------|--------|--------|---------|--------------------|--------|---------|----------|
|                                 | US       | Japan  | GSM    | US      | Korea              | DCS    | WODMA   | OIZE     |
| CDMA                            | ECM001   | ECM005 |        | ECM004  | ECM008/<br>ECM028* |        |         | 6 X 6mm  |
| CDMA w/<br>Step Bias<br>Control | ECM011   |        |        | ECM014  | ECM018             |        | ECM010  | 6 X 6mm  |
|                                 | ECM051*  |        |        | ECM054* |                    |        | ECM050* | 4 X 4mm* |
| IS136<br>TDMA                   | ECM806   |        |        | ECM807  |                    |        |         |          |
| GSM /<br>GPRS-12                |          |        | ECM007 | ECM007  |                    | ECM007 |         | 9 X 11mm |
|                                 |          |        | ECM009 | ECM009  |                    | ECM009 |         | 6 X 6mm  |





### **EiC PAM Product Evolution**



# **New GSM Leadership Products**

- New GPRS Handset Power Amplifiers
  - Unique single-chip tri-band design allowing smallest form factor package.
  - Superior thermal design allowing Class 12 GPRS data rates.
  - Available in 6X6 and 9X11 mm LCC packages
- New GPRS Class 12 products position EiC to serve 2.5G handset and PDA (Personal Digital Assistant) customers as well as existing GSM cellular phones
- Leading technology to serve a growing market
   EiC com

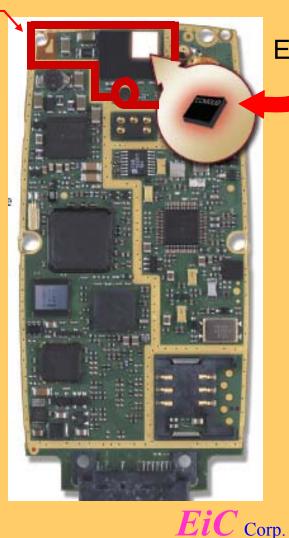
# Benefit of GPRS-12 Tri-band PAM

- World's 1<sup>st</sup> InGaP HBT GPRS Class 12 Tri-Band PAM
- High Module Assembly Reliability with Single HBT Die
- ECM009 is the industry's smallest footprint (6x6mm) Tri-Band GSM solution
- ECM007 is compatible with CX77302 and RF3160 with the benefit of class 12 operation

## Key Features of GSM / GPRS Tri-band PAMs

- 9x11mm and 6x6mm footprints (2 PAMs)
- 50 ohms matched at Input and Output
- Tri-band Operation (GSM / DCS / PCS)
- GPRS class 12 operation (50% duty cycle)
- Compatible with ADI, LT & Phillips Power Control IC
- APC has over-voltage protection
- Low △Pout/ △Vapc for easy control




#### World's Smallest GSM/GPRS Power Amplifier Module

**TX Section** 

>GSM/GPRS Class 12

Single chip triband power amplifier module

>Manufactured using EiC's industry leading InGaP HBT process



ECM009

>1/3 the size of current product available

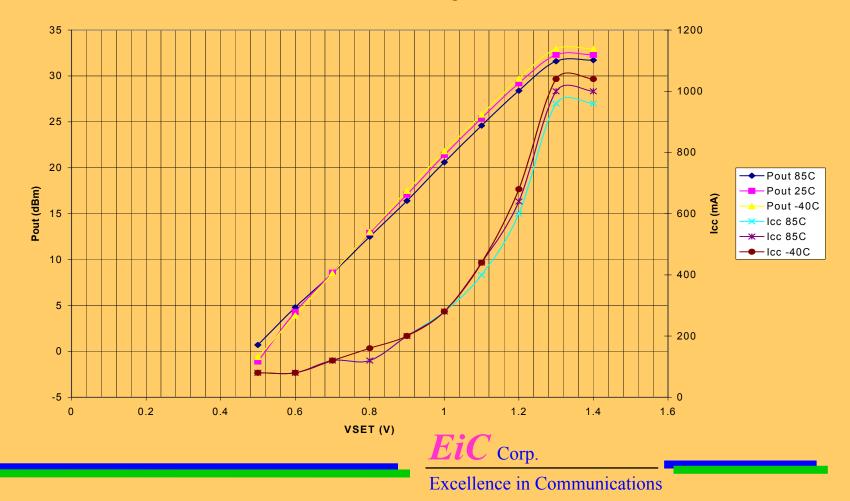
Increases
 design flexibility
 for smaller
 handsets and
 PDAs

Provides more space for increased functionality

### GSM band Power Control Frequency Response



#### GSM Band Power Control Temperature Response


Pout, Icc vs VSET@900MHz



**EiC** Corp. Excellence in Communications

#### DCS Band Power Control Temperature Response

Pout, Icc vs VSET@1.75GHz



## Leakage Current

|                    | 25°C  |       | -40°C |       | 85°C   |       |
|--------------------|-------|-------|-------|-------|--------|-------|
| Leakage<br>Current | DCS   | GSM   | DCS   | GSM   | DCS    | GSM   |
| BS                 | 2V    | 0     | 2V    | 0     | 2V     | 0     |
| V <sub>APC</sub>   | 0     | 0     | 0     | 0     | 0      | 0     |
| V <sub>cc</sub>    | 3.69V | 3.82V | 3.69V | 3.82V | 3.69V  | 3.82V |
| I <sub>cc</sub>    | 2.8uA | 2.9uA | 0.9uA | 0.9uA | 10.8uA | 11uA  |



**Excellence in Communications** 

#### Conclusion

- ECM007/9 are supported by EiC's highly reliable InGaP HBT process
- Single die for easy module assembly and reliability
- Significant board space savings
- EiC ECM009: 6x6 mm...GPRS-12...Tri-Band means market leadership !!



**Excellence in Communications** 

### CDMA Power Amplifier Modules

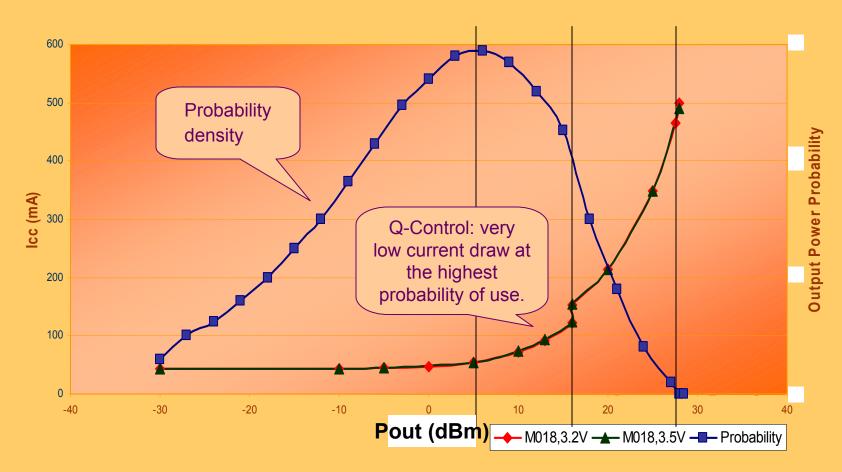
- EiC CDMA PCS modules have industry leading performance
- New Q-Control (stepped bias) CDMA modules are currently being shipped
- Q-Control modules have superior performance vs. competing solutions and unique features
  - Highest efficiency at lower power mode, 9% @ 16dBm Po
  - Temperature compensation circuitry integrated into chip



Advantages of EiC's CDMA Q-Control PAM Family (1)

- Highest efficiency at lower power mode, 9% @ 16dBm Pout
  - Longer talk time due to higher probability of use at lower power level
  - 9% efficiency at 16dBm is 33% better than "typical" value of leading competitors




**Excellence in Communications** 

#### Advantages of EiC's CDMA Q-Control PAM Family (2)

- Less temperature sensitivity with on chip temperature compensation circuitry
  - Quiescent current is well controlled over temperature resulting in higher operation efficiency.
  - ACPR is stable over temperature.
  - As phone board heats up, the Icq is kept constant to further conserve battery power.

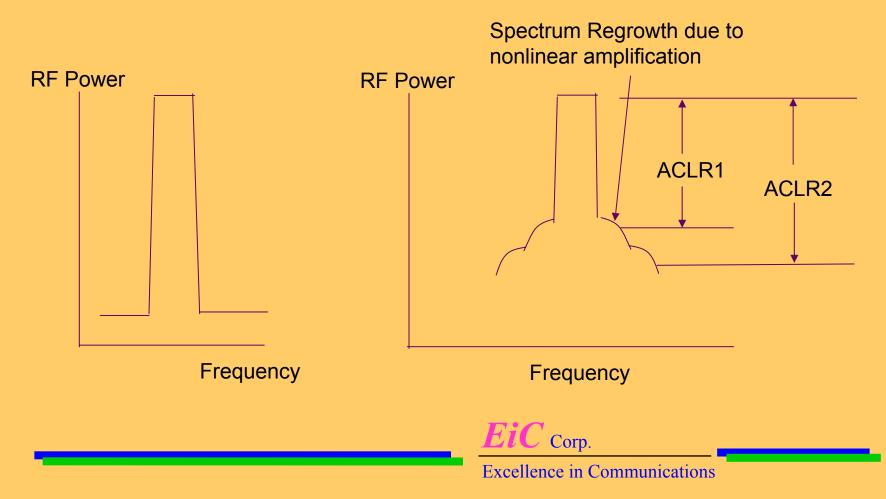


#### ECM018 (PCS-K Band) Operation Current vs Probability Density

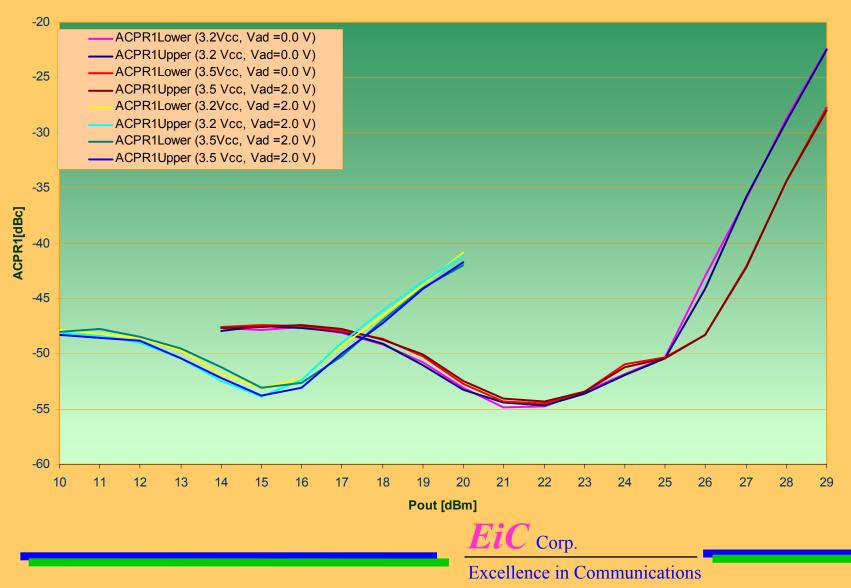


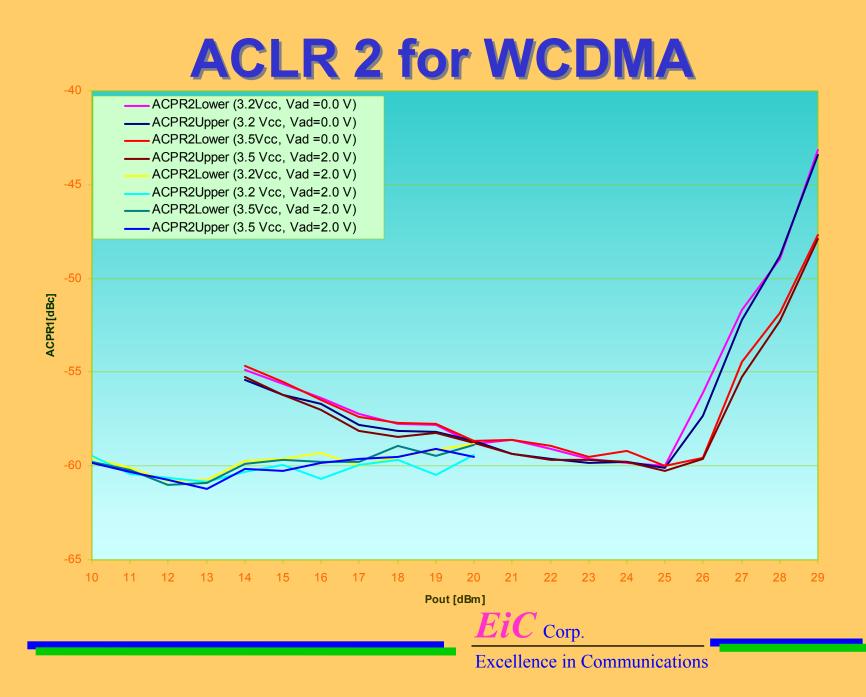
**EiC** Corp. Excellence in Communications

#### **Efficiency vs. Pout of WCDMA**




# **Linearity in CDMA System**


- CDMA-one (IS-95), CDMA-2000, and WCDMA all operate with time-varying amplitude modulation
- Therefore the amplifier non-linearity will increase the spill over of signal power into adjacent and alternate channels
- The linearity of the PAM is measured by ACPR / ACLR




# Spectrum Re-growth through a Nonlinear Amplifier



## **ACLR 1 for WCDMA**





#### **Benefits of EiC CDMA Q-Control PAM**

Increased Efficiency at Low Output Power Level

#### – Longer Talk Time

- Q-Control "stepped bias" feature.
- Quiescent current is well controlled over temperature resulting in higher operation efficiency.
- Integrated temperature compensation circuit maintains Icq relatively constant.
  - ACPR is stable over temperature.
  - As phone board heats up, the lcq is kept constant to further conserve battery power.
- Same PAM operation current over full temperature range.
- Reliable world class package

