
            

Load Distribution on a Linux Cluster using Load Balancing 
 

Aravind Elango      M. Mohammed Safiq 

                                    

 

 

 

Abstract: 

In a cluster of computers, the system load that exists in each of the computers if 

nearly equal is an indicator of good resource utilization.  Instead of balancing the load in 

the cluster by process migration, or by moving an entire process to a less loaded 

computer, we made an attempt to balance load by splitting up large incoming problems 

by our novel method and then distributing them to computers in the cluster. The results 

on implementation of our ideas, algorithms and test values have also been put forth. In 

this paper we present our Load Balancing technique along with experimental results as a 

proof of technique. 

 

Keywords: 

 Cluster computing, Linux clusters, Load Balancing. 

 

Problem Definition: 

The distribution algorithms that we propose is for problems that are inherently 

parallel or problems that can be worked with reasonable amount of synchronization. The 

problem should be divisible into a number of smaller, similar tasks. Examples of such 

problems include mathematically intensive operations like all matrix operations, Fast 

Fourier Transformation and prime numbers computation. 

 

Proposed Distribution Algorithm: 

Our distribution algorithm considers the number of nodes present, their current 

load and the amount of computation required and calculates the load distribution among 

the nodes. The inputs to the algorithm are number of nodes online, the expected load 

Undergraduate Students of Engg. 
Dept. of Computer Science and Engg. 

PSG College of Technology 
India 

 



increase each task is to cause, the number of tasks and load in each node. The tasks are to 

be distributed in such a way that each node gets a proportionate number of tasks to 

process and at the same time all the nodes get equally loaded. Finding the total increase 

in load for all nodes taken together, and then dividing it by the number of systems can 

achieve this. This provides the expected load per node. Now this becomes a theoretical 

upper limit for the load on each node. Hence we subtract the current load from the 

expected load to get the increase in load for each node. If the increase is zero or negative, 

it suggests that the load in that particular node is higher or equal to the theoretical upper 

limit and hence it would not merit any consideration for the allocation of tasks. Next the 

percentage of tasks each node is to calculate is found out by dividing the increase in load 

for each machine by the total increase in load (considering only the nodes which are 

going to do processing). This gives a measure of how to divide the tasks amongst the 

nodes. Multiplying this percentage by the total number of tasks, the numbers of tasks per 

node for all the nodes, which are going to take part in the processing, are found. 

 

Finding The Load Per Task (lpt): 

Before the distribution algorithm is executed, the procedure should be scanned 

once to estimate the number of arithmetic operators, relational operators and system calls 

that each task requires and the load per task is calculated.  

Let us suppose that there are four computers in the cluster with loads as shown 

below:  

 

 

 

 

The process to be executed: 

      cr = cc = 1 

      er = ec = c1 = c2 = r1 = 400 

      lseek(fr , cr*c1*4 ,SEEK_SET); 
      lseek(fc , cc*c1*4 ,SEEK_SET); 
      for(;cr<r1;cr++) 
      { 
       for(;cc<c2;cc++) 
       { 
        if(cr==er&&cc==ec) 
         exit(0); 

Comp 1 
Curr Load 
  0.2 

Comp 2 
Curr Load 
    0.4 

Comp 3 
Curr load 
    0.3 

Comp 4 
Curr Load 
     0.1 



        el3=0; 
        for(i=0;i<c1;i++) 
        { 
         read(fr,&el1,4); 
         read(fc,&el2,4); 
         el3+=el1*el2; 
        } 
        send(new_fd,&el3,4,0); 
        lseek(fr,-c1*4,SEEK_CUR); 
       } 
       cc = 0; 
       lseek(fc,0,SEEK_SET); 
       lseek(fr,c1*4,SEEK_CUR); 
      } 

 

If the above code were to be executed, the load per task is to be calculated as 

follows: 

Analyzing the code we can find 

 No. of Arithmetic and:             400*400*400*2 + 400 = 128000400 

 No. of Relational operations :  400*400*2 =  320000  

 No. of  System Calls :              400*400*400*2 + 400*400*2+400*2 = 128320800 

 

Total Increase in Load =  Load increase for 128000400 arithmetic operators +    

                                         Load increase for 320000 relational operators +    

                         Load increase for 128320800 System Calls 

 

The Load increase for the arithmetic and relational operators and system calls is 

mentioned in table 1.1  

 

Substituting those values,  

Total Increase in Load = ( 128000400 *  3.025 e –9 ) + ( 320000 *  3.025 e –9 ) 

               + (  128320800 * 3.210 e –9 ) 

  

Increase in Load for the execution of the entire process is  = 0.8   

The entire process consists of 1,60,000 tasks and hence 

 

Increase in Load per task = 0.8 / 1,60,000 = 0.000005 

Expected Load per machine =  (1.0 + 0.8 )/4 = 0.45 



Increase in Load of Comp 1 = 0.25 

Increase in Load of Comp 2 = 0.05  

Increase in Load of Comp 3 = 0.15 

Increase in Load of Comp 4 = 0.35 

Percentage of Tasks allotted to Comp 1 = 0.25 /0.8 = 0.3125  

Percentage of Tasks allotted to Comp 2 = 0.05 /0.8 = 0.0625 

Percentage of Tasks allotted to Comp 3 = 0.15 /0.8 = 0.1875 

Percentage of Tasks allotted to Comp 4 = 0.35/0.8 =  0.4375 

Number of Tasks Allotted To Comp 1 : 0.3125 * 160000 = 50,000 

Number of Tasks Allotted To Comp 2 : 0.0625 * 160000 = 10,000 

Number of Tasks Allotted To Comp 3 : 0.1875 * 160000 =  30,000 

Number of Tasks Allotted To Comp 4 : 0.4375 * 160000 =  70,000 

 

This Procedure is detailed in the algorithm 1.1 

 
Operators 

 

 
Symbol 

 
Increase in 

Load/Operation 
 
 

Arithmetic Operators 
 

 
Addition(+) 

Subtraction(-) 
Multiplication (*) 

Mod(%) 
Division(/) 

 

 
 

3.025 e –9 

 
 
 

Relational Operators 
 

 
Equalto(=) 

Less Than(<) 
Less Than or Equalto (<=) 

Greater Than or equalto(>=) 
Not Equalto(!=) 

And (&&) 
Or ( | ) . 

 

 
 
 

3.025 e –9 

 
System Calls 

 

 
Resource Allocating system 
call such as fopen(), brk() 

etc…. 
Utilizing system Calls such 

as read() and Write() 
 

 
 
 

3.210 e -9 
 
 
 

Table 1.1 



 
           

             These values were found on an experimental basis by substituting various 

values and finally those which provided the best results are presented above. The 

increases in load computed based on these values, ideally reflected the increase in load 

for other matrix operations, factorials and prime numbers. 

 

Algorithm 1.1 
Inputs: n, lpt, nt, li         Outputs: ntmi 

Where 

n        =    Number of Terminals in the cluster 

lpt     =    Load Per Task 

li       =    Current Load in Machine i  

nt      =    Number of Tasks 

ntmi  =    Number of Tasks for Machine i 

elm   =     Expected load per machine 

 

Expected load per machine 

elm  =         ∑ li + nt * lpt 

                    n 

 

Increase in load for node i  

ilmi = elm - li 

 

Percentage of tasks allocated to node i 

Pi   =       ilmi   (ilmi > 0 )     

   ∑ilmi  (ilmi > 0 ) 

Pi     =   0           ( if  ilmi <= 0 )  

 

Number of tasks allocated for node I : ntmi  =  Pi * nt 



IMPLEMENTATION AND EXPERIMENTAL RESULTS 

 

We noticed that most of the tasks which could be split into well defined  

Independent modules and processed, had matrix operations as a major part in them. 

Hence we chose matrix multiplication to experiment our ideas with. 

 

Implementation Procedure : 

• The machines that are connected in the network and in working condition are 

checked and their IP addresses are entered in a data file. 

• As the next step, the present load in each of the machines is retrieved. 

• The approximate increase in load for the computation of a single task is calculated 

by scanning the procedure once and estimating the number of arithmetic 

operators, logical operators and system calls.     

• The increase in system load for various operations as we have found, are as 

mentioned in the table 1.1. 

• Once the load per task has been calculated, inputs are provided for the distribution 

algorithm and the number of tasks that are to be calculated in each machine is 

determined. 

• These tasks are allotted to the appropriate computers and the results are sent back 

to the computer in which the request had initially been made and these results are 

combined to achieve the desired output.  

 

          The design was tested by multiplying 2 matrixes each having 400 rows and 

400 columns. These inputs have been generated by a random function. The procedure 

was tested with the following configuration. Socket programs were used to communicate 

between computers.  

      
Operating System Linux Red Hat 7.0 
Processor Pentium-III  650Mhz 
Hard disk Capacity 8 GB 
RAM 128 MB 
Communication between Computers TCP/IP Sockets 
File System Network File System ( NFS ) 



 
 
 
 
Results: 
  
 
                           Normal Environment 

 
                      Distributed Environment 
 

 
No. Of 
Computers 
 

 
Initial load 

 
Final Load 

 
Time for 
Computation 
 (Seconds) 

 
No. Of 
Computers 

 
Initial load 
Comp - 1 

 
Initial load 
Comp – 2 

 
Final load 
Comp – 1 

 
Final load 
Comp -2 

 
Total Time          
for 
Computation 
(Seconds) 

 
1 
 

 
    0.0 

 
  0.92 

 
 127.127 

 
2 

 
0.0 

 
0.0 

 
0.48 

 
0.47 

 
63.728 

 
1 
 

 
 

   
2 

 
0.20 

 
0.0 

 
0.58 

 
0.60 

 
84.210 

 
1 
 

 
 

   
2 

 
0.20 

 
0.20 

 
0.68 

 
0.69 

 
66.937 

 
1 
 

    
2 

 
1.0 

 
0.0 

 
1.0 

 
0.95 

 
129.245 

 

 





Further work: 

 Currently we are working on the experimentation of an improved algorithm that consider 

the network bandwidth available, the congestion situation and node unavailability during 

runtime, to provide a fault tolerant, high availability cluster computation environment. The 

experimental results are currently unavailable. As future work, we plan to extend the algorithm 

for heterogeneous environments. 

 
Conclusion: 

 

In this paper we have detailed our distribution algorithm that aims to reduce processing 

time based on assigning load values to operators and system calls and using balanced load as an 

indicator of efficiency. 

 

 
Reference: 
 

1. “Empirical Analysis of Overheads in Cluster Environment”, Brian K. Schmidt, V. 
Sunderam. 

2. “Massive Parallelism with Workstation Clusters – Challenge or Nonsense?”, 
Clemens H. Cap, 1993. 

3. “ Optimizing Parallel Applications for Wide-Area Clusters”, Henri E. Bal, Aske Plaat, 
Mirjam E. Bakker, Peter Dozy, Rutger F. H. Hofman, 1997. 

 
 


