
Client_Socket Interfaces (TCP Connection Setup and Release)
Client Node Internet Server Node

Client Net Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

14-Apr-02 20:19 (Page 1)

Copyright (c) 2002 EventHelix.com Inc. All Rights Reserved.

LEG: About TCP 

TCP (Transmission Control Protocol) provides a reliable end to end service that delivers packets over the Internet. Packets
are delivered in sequence without loss or duplication.

create Server Application creates a Socket

create Client Application creates Socket

Closed The socket is created in the Closed state
seq_num = 0 Initial sequence number is set to 0

Active_Open Application wishes to communicate with a destination server
using a TCP connection. The application opens a socket for the
connection in active mode. In this mode, a TCP connection will
be attempted with the server.

Typically, the client will use a well known port number to
communicate with the remote Server. For example, HTTP uses
port 80.
LEG: Client initiates TCP connection 

Client initiated three way handshake to establish a TCP connection

SYN
src = Client_Port, dst =

Server_Port, seq_num = _0

Client sets the SYN bit in the TCP header to request a TCP
connection. The sequence number field is set to 0. Since the
SYN bit is set, this sequence number is used as the initial
sequence number

SYN Sent Socket transitions to the SYN Sent state

SYN_ACK
src = Server_Port, dst =
Client_Port, seq_num =

_100, ack_num = _1, window
= _65535

Client receives the SYN_ACK TCP segment

ACK
src = Client_Port, dst =
Server_Port, ack_num =
_101, window = _5000

Client now acknowledges the first segment, thus completing
the three way handshake. The receive window is set to 5000.
Ack sequence number is set to 101, this means that the next
expected sequence number is 101.

Established At this point, the client assumes that the TCP connection has
been established
LEG: Short data transfer 

Data transfer phase: Here a short data transfer takes place, thus TCP slow start has little impact

Data
size = _1024

Client application sends 1024 bytes of data to the socket

Split data into TCP
segments

This TCP connection limits TCP segments to 512 bytes, thus
the received data is split into 2 TCP segments

TCP_Segment
seq_num = _1, len = _512

The first TCP segment is sent with a sequence number of 1.
This is the sequence number for the first byte in the segment.

(Note that unlike other protocols, TCP maintains sequence
numbers at byte level. The sequence number field in the TCP
header corresponds to the first byte in the segment.)

TCP_Segment
seq_num = _513, len = _512

Bytes in the first TCP segment correspond to 1 to 512 sequence
numbers. Thus, the second TCP segment contains data starting
with 513 sequence number

ACK
ack_num = _1025

TCP_Segment
seq_num = _1, len = _512

TCP_Segment
seq_num = _613, len = _188

Client has received both the TCP segments



Client_Socket Interfaces (TCP Connection Setup and Release)
Client Node Internet Server Node

Client Net Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

14-Apr-02 20:19 (Page 2)

Assemble TCP Segments

Data
size = _700

Socket passes data to Client application

ACK
ack_num = _701

Client sends a TCP ACK with the next expected sequence
number set to 701

LEG: Client initiates TCP connection close 

Client initiates TCP connection close

Close Client application wishes to release the TCP connection

FIN Client sends a TCP segment with the FIN bit set in the TCP
header

FIN Wait 1 Client changes state to FIN Wait 1 state

ACK Client receives the ACK

FIN Wait 2 Client changes state to FIN Wait 2. In this state, the TCP
connection from the client to server is closed. Client now waits
close of TCP connection from the server end

FIN Client receives FIN

ACK Client sends ACK

Close_Timer Client starts a timer to handle scenarios where the last ack has
been lost and server resends FIN

Time Wait Client waits in Time Wait state to handle a FIN retry

delete

Close_Timer Close timer has expired. Thus the client end connection can be
closed too.

Closed

delete



Client_Socket Interfaces (TCP Slow Start)
Client Node Internet Server Node

Client Net Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

14-Apr-02 20:19 (Page 3)

Copyright (c) 2002 EventHelix.com Inc. All Rights Reserved.

LEG: About TCP Slow Start 

TCP is an end to end protocol which operates over the heterogeneous Internet. TCP has no advance knowledge of the
network characteristics, thus it has to adjust its behavior according to the current state of the network. TCP has built in
support for congestion control. Congestion control ensures that TCP does not pump data at a rate higher than what the

network can handle.

In this sequence diagram we will analyse "Slow start", an important part of the congestion control mechanisms built right
into TCP. As the name suggests, "Slow Start" starts slowly, increasing its window size as it gains confidence about the

networks throughput.

create Server Application creates a Socket

create Client Application creates Socket

Closed The socket is created in the Closed state
seq_num = 0 Initial sequence number is set to 0

Active_Open Application wishes to communicate with a destination server
using a TCP connection. The application opens a socket for the
connection in active mode. In this mode, a TCP connection will
be attempted with the server.

Typically, the client will use a well known port number to
communicate with the remote Server. For example, HTTP uses
port 80.
LEG: Client initiates TCP connection 

Client initiated three way handshake to establish a TCP connection

SYN
src = Client_Port, dst =

Server_Port, seq_num = _0

Client sets the SYN bit in the TCP header to request a TCP
connection. The sequence number field is set to 0. Since the
SYN bit is set, this sequence number is used as the initial
sequence number

SYN Sent Socket transitions to the SYN Sent state

SYN_ACK
src = Server_Port, dst =
Client_Port, seq_num =

_100, ack_num = _1, window
= _65535

Client receives the SYN_ACK TCP segment

ACK
src = Client_Port, dst =
Server_Port, ack_num =
_101, window = _5000

Client now acknowledges the first segment, thus completing
the three way handshake. The receive window is set to 5000.
Ack sequence number is set to 101, this means that the next
expected sequence number is 101.

Established At this point, the client assumes that the TCP connection has
been established
LEG: TCP Slow Start 

A TCP connection starts in the "Slow Start" state. In this state, TCP adjusts its transmission rate based on the rate at which
the acknowledgements are received from the other end.

TCP Slow start is implemented using two variables, viz cwnd (Congestion Window)and ssthresh (Slow Start Threshold).
cwnd is a self imposed transmit window restriction at the sender end. cwnd will increase as TCP gains more confidence on

the networks ability to handle traffic. ssthresh is the threshold for determining the point at which TCP exits slow start. If
cwnd increases beyond ssthresh, the TCP session in that direction is considered to be out of slow start phase

cwnd = 512 (1 segment) Client maintains a congestion window (cwnd). Initially the
window is set to lower of the maximum TCP segment size and
receiver's allowed window size. In most cases the segment size
is smaller than receiver window, thus cwnd is set to the
maximum TCP segment size (512 in this example)

Note here that cwnd implements a transmitter end flow control.
The receiver advertised window implements a receiver
enforced flow control.

ssthresh = 65535 TCP connections start with ssthresh set to 64K. This variable
will be used to determine the point at which TCP exits slow



Client_Socket Interfaces (TCP Slow Start)
Client Node Internet Server Node

Client Net Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

14-Apr-02 20:19 (Page 4)

start
Slow Start Client end TCP connection moves to slow start state

Data
size = _5120

Client application sends 5120 bytes of data to the socket

Roundtrip #1 of data transmission

TCP_Segment
seq_num = _1, len = _512

The first TCP segment is sent with a sequence number of 1.
This is the sequence number for the first byte in the segment.

ACK
ack_num = _513

Client receives the acknowledgement for the first TCP data
segment

cwnd = 1024 (2
segments)

As the TCP session is in slow start, receipt of an
acknowledgement increments the congestion window by one 1
segment.

Roundtrip #2 of data transmission

TCP_Segment
seq_num = _513, len = _512

Since the congestion window has increased to 2, TCP can now
send two segments without waiting for an ack

TCP_Segment
seq_num = _1025, len = _512

ACK
ack_num = _1537

cwnd = 1536 (3
segments)

Receipt for ack again moves the congestion window

Roundtrip #3 of data transmission

TCP_Segment
seq_num = _1537, len = _512

Now three segments can be sent without waiting for an ack

TCP_Segment
seq_num = _2049, len = _512

TCP_Segment
seq_num = _2561, len = _512

ACK
ack_num = _2561

The TCP acknowlegements again increment cwnd. This time
two acks are received, so cwnd will get incremented by 2

cwnd = 2048 (4
segments)

ACK
ack_num = _3073

cwnd = 2560 (5
segments)

TCP_Segment
seq_num = _3073, len = _512

Since cwnd has reached 5 segments, TCP is allowed to send 5
segments without waiting for the ack

Roundtrip #4 of data transmission

TCP_Segment
seq_num = _3585, len = _512

TCP_Segment
seq_num = _4097, len = _512

TCP_Segment
seq_num = _4609, len = _512

TCP_Segment
seq_num = _5121, len = _512

ACK
ack_num = _4097

Three acknowledgements will be received for the 5 TCP
segments. Now the cwnd has almost started increasing
geometrically for every round trip between the client and the
server.

cwnd = 3072 (6
segments)



Client_Socket Interfaces (TCP Slow Start)
Client Node Internet Server Node

Client Net Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

14-Apr-02 20:19 (Page 5)

ACK
ack_num = _5121

cwnd = 3584 (7
segments)

ACK
ack_num = _5633

cwnd = 4096 (8
segments)

Roundtrip #5 of data transmission

TCP_Segment This time 8 TCP segments are sent

TCP_Segment

TCP_Segment

TCP_Segment

TCP_Segment

TCP_Segment

TCP_Segment

TCP_Segment

ACK Now four acks will be received, thus moving cwnd even more
quickly

cwnd = 4608 (9
segments)

ACK

cwnd = 5120 (10
segments)

ACK

cwnd = 5630 (11
segments)

ACK

cwnd = 6144 (12
segments)

Within a few more roundtrip interactions cwnd will exceed ssthresh. At this point the session will be considered out of
slow start. Note that the TCP connection from the client side is out of slow start but the server end is still in slow start as it

has not sent any data to the client.

Exiting slow start signifies that the TCP connection has reached an equilibrium state where the congestion window closely
matches the networks capacity. From this point on, the congestion window will not move geometrically. cwnd will move

linearly once the connection is out of slow start.

Congestion
Avoidance

Once slow start ends, the session enters congestion avoidance
state. This will be discussed in a subsequent article.
LEG: Client initiates TCP connection close 

Client initiates TCP connection close

Close Client application wishes to release the TCP connection

FIN Client sends a TCP segment with the FIN bit set in the TCP
header

FIN Wait 1 Client changes state to FIN Wait 1 state

ACK Client receives the ACK

FIN Wait 2 Client changes state to FIN Wait 2. In this state, the TCP
connection from the client to server is closed. Client now waits
close of TCP connection from the server end

FIN Client receives FIN

ACK Client sends ACK



Client_Socket Interfaces (TCP Slow Start)
Client Node Internet Server Node

Client Net Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

14-Apr-02 20:19 (Page 6)

Close_Timer Client starts a timer to handle scenarios where the last ack has
been lost and server resends FIN

Time Wait Client waits in Time Wait state to handle a FIN retry

delete

Close_Timer Close timer has expired. Thus the client end connection can be
closed too.

Closed

delete



Client_Socket Interfaces (TCP Congestion Avoidance)
Client Node Internet Server Node

Client Net Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

14-Apr-02 20:19 (Page 7)

Copyright (c) 2002 EventHelix.com Inc. All Rights Reserved.

LEG: About TCP Congestion Avoidance 

We have already seen that TCP connection starts up in slow start mode, geometrically increasing the congestion window
(cwnd) until it crosses the slow start threshold (ssthresh). Once cwnd is greater that ssthresh, TCP enters the congestion

avoidance mode of operation. In this mode, the primary objective is to maintain high throughput without causing
congestion. If TCP detects segment loss, it assumes that congestion has been detected over the internet. As a corrective

action, TCP reduces its data flow rate by reducing cwnd. After reducing cwnd, TCP goes back to slow start.

create Server Application creates a Socket

create Client Application creates Socket

Closed The socket is created in the Closed state
seq_num = 0 Initial sequence number is set to 0

Active_Open Application wishes to communicate with a destination server
using a TCP connection. The application opens a socket for the
connection in active mode. In this mode, a TCP connection will
be attempted with the server.

Typically, the client will use a well known port number to
communicate with the remote Server. For example, HTTP uses
port 80.
LEG: Client initiates TCP connection 

Client initiated three way handshake to establish a TCP connection

SYN
src = Client_Port, dst =

Server_Port, seq_num = _0

Client sets the SYN bit in the TCP header to request a TCP
connection. The sequence number field is set to 0. Since the
SYN bit is set, this sequence number is used as the initial
sequence number

SYN Sent Socket transitions to the SYN Sent state

SYN_ACK
src = Server_Port, dst =
Client_Port, seq_num =

_100, ack_num = _1, window
= _65535

Client receives the SYN_ACK TCP segment

ACK
src = Client_Port, dst =
Server_Port, ack_num =
_101, window = _5000

Client now acknowledges the first segment, thus completing
the three way handshake. The receive window is set to 5000.
Ack sequence number is set to 101, this means that the next
expected sequence number is 101.

Established At this point, the client assumes that the TCP connection has
been established
LEG: TCP Congestion Avoidance Operation 

cwnd = 512 bytes (1
segment)

TCP connection begins with a congestion window size of 1
segment

ssthresh = 65535 bytes The slow start threshold starts with 64 Kbytes as the threshold
value.

TCP session begins with "Slow Start". See the sequence diagram on slow start for details

Slow Start Since cwnd < ssthresh, TCP state is slow start

TCP congestion window grows from 512 bytes (1 segment) to 64947 (assuming no segment losses are detected during
slow start). During slow start the congestion window was being incremented by 1 segment for every TCP Ack from the

other end.

Data Client Application sends data for transmission over the TCP
Socket

TCP_Segment
seq_num = _100000, len =

_512

Data is split into TCP Segments. The segments are sent over
the Internet

TCP_Segment
seq_num = _100512, len =

_512



Client_Socket Interfaces (TCP Congestion Avoidance)
Client Node Internet Server Node

Client Net Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

14-Apr-02 20:19 (Page 8)

ACK
ack_num = _101024, window

= _80000

cwnd = 64947 + 512 =
65459

Since TCP is in slow start, every ack leads to the window
growing by one segment.

Congestion
Avoidance

At this point cwnd (=65459) > ssthresh (=65535) thus TCP
changes state to congestion avoidance. Now TCP window
growth will be much more conservative. If no segment or ack
losses are detected, the congestion window will grow no more
than one segment per roundtrip. (Compare this with geometric
growth of 1 segment per TCP ack in slow start)

Data More data is received from the client application

TCP_Segment
seq_num = _101024, len =

_512

Client data is split into TCP segments

TCP_Segment
seq_num = _101536, len =

_512

ACK
ack_num = _102048, window

= _80000

cwnd is incremented using the formula: cwnd = cwnd + (segment_size segment_size) / cwnd)

cwnd = 65459 + [(512 *
512) / 65459] = 65459 +

4 = 65463

Now TCP is in congestion avoidance mode, so the TCP
window advances very slowly. Here the window increased by
only 4 bytes.

Data Data to be sent to server

TCP_Segment
seq_num = _102048, len =

_512

TCP session sends out the data as a single segment

AckTimer TCP session starts a ack timer, awaiting the TCP ack for this
segment.

Note: The above timer is started for every segment. The timer
is not shown at other places as it played role in our analysis

AckTimer TCP times out for a TCP ACK from the other end. This will be
treated as a sign of congestion by TCP

ssthresh = 65463/2 =
32731

When TCP detects congestion, it stores half of the current
congestion window in ssthresh variable. In this case, ssthresh
has been reduced from 65535 to 32731. This signifies that TCP
now has less confidence on the network's ability to support big
window sizes. Thus if the window size falls due to congestion,
rapid window size increases will be carried out only until the
window reaches 32731. Once this lowered ssthresh value is
reached, window growth will be much slower.

cwnd = 512 bytes (1
segment)

Since current congestion has been detected by timeout, TCP
takes the drastic action of reducing the congestion window to 1.
As you can see, this will have a big impact on the throughput.

Slow Start cwnd (=1) is now lower than ssthresh (=32731) so TCP goes
back to slow start.

TCP_Segment
seq_num = _102048, len =

_512

ACK
ack_num = _102560

cwnd = 512 + 512 = 1024 Since TCP is in slow start, a TCP acknowledgement results in
the window growing by one segment

TCP window continues to grow exponentially until it reaches the ssthresh (=32731) value.

Data
size = _3072



Client_Socket Interfaces (TCP Congestion Avoidance)
Client Node Internet Server Node

Client Net Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

14-Apr-02 20:19 (Page 9)

TCP_Segment
size = _512

Six TCP segments are transmitted in the slow start mode

TCP_Segment
size = _512

TCP_Segment
size = _512

TCP_Segment
size = _512

TCP_Segment
size = _512

TCP_Segment
size = _512

ACK Ack for the first two segments is received

cwnd = 32730 + 512 =
33242

TCP is in slow start so the congestion window is increased by
one segment

Congestion
Avoidance

Now cwnd (=33242) > ssthresh (=32731), thus the TCP session
moves into congestion avoidance

ACK Ack for the next two segments is received

cwnd = 33242 +
(512*512)/33242 = 33242

+ 8 = 33250

Now the TCP window is growing very slowly by
approximately 8 bytes per ack

ACK Ack for the last two segments is received

cwnd = 33250 +
(512*512)/33250 = 33250

+ 8 = 33258

Congestion window continues to advance at a slow rate

LEG: Client initiates TCP connection close 

Client initiates TCP connection close

Close Client application wishes to release the TCP connection

FIN Client sends a TCP segment with the FIN bit set in the TCP
header

FIN Wait 1 Client changes state to FIN Wait 1 state

ACK Client receives the ACK

FIN Wait 2 Client changes state to FIN Wait 2. In this state, the TCP
connection from the client to server is closed. Client now waits
close of TCP connection from the server end

FIN Client receives FIN

ACK Client sends ACK

Close_Timer Client starts a timer to handle scenarios where the last ack has
been lost and server resends FIN

Time Wait Client waits in Time Wait state to handle a FIN retry

delete

Close_Timer Close timer has expired. Thus the client end connection can be
closed too.

Closed

delete



Client_Socket Interfaces (TCP Fast Retransmit and Fast Recovery)
Client Node Internet Server Node

Client Net Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

14-Apr-02 20:19 (Page 10)

Copyright (c) 2002 EventHelix.com Inc. All Rights Reserved.

LEG: About Fast Retransmit and Fast Recovery 

TCP Slow Start and Congestion Avoidance lower the data throughput drastically when segment loss is detected. Fast
Retransmit and Fast Recovery have been designed to speed up the recovery of the connection, without compromising its

congestion avoidance characteristics.

Fast Retransmit and Recovery detect a segment loss via duplicate acknowledgements. When a segment is lost, TCP at the
receiver will keep sending ack segments indicating the next expected sequence number. This sequence number would

correspond to the lost segment. If only one segment is lost, TCP will keep generating acks for the following segments. This
will result in the transmitter getting duplicate acks (i.e. acks with the same ack sequence number)

create Server Application creates a Socket

create Client Application creates Socket

Closed The socket is created in the Closed state
seq_num = 0 Initial sequence number is set to 0

Active_Open Application wishes to communicate with a destination server
using a TCP connection. The application opens a socket for the
connection in active mode. In this mode, a TCP connection will
be attempted with the server.

Typically, the client will use a well known port number to
communicate with the remote Server. For example, HTTP uses
port 80.
LEG: Client initiates TCP connection 

Client initiated three way handshake to establish a TCP connection

SYN
src = Client_Port, dst =

Server_Port, seq_num = _0

Client sets the SYN bit in the TCP header to request a TCP
connection. The sequence number field is set to 0. Since the
SYN bit is set, this sequence number is used as the initial
sequence number

SYN Sent Socket transitions to the SYN Sent state

SYN_ACK
src = Server_Port, dst =
Client_Port, seq_num =

_100, ack_num = _1, window
= _65535

Client receives the SYN_ACK TCP segment

ACK
src = Client_Port, dst =
Server_Port, ack_num =
_101, window = _5000

Client now acknowledges the first segment, thus completing
the three way handshake. The receive window is set to 5000.
Ack sequence number is set to 101, this means that the next
expected sequence number is 101.

Established At this point, the client assumes that the TCP connection has
been established
LEG: Fast Retransmit and Recovery 

TCP Connection begins with slow start. The congestion window grows from an initial 512 bytes to 70000 bytes

cwnd = 70000 Congestion window has reached 70000 bytes

Data
size = _4096

Client App transmits 4Kbytes of data

Segment data into 8 TCP
segments

TCP segments data to 8 TCP segments (each segment is 512
bytes)

TCP_Segment
seq_num = _100000

TCP segment (start sequence number = 100000) is transmitted

TCP_Segment
seq_num = _100512

TCP segment (start sequence number = 100512) is transmitted

TCP_Segment
seq_num = _101024

TCP segment (start sequence number = 101024) is transmitted

TCP_Segment
seq_num = _101536

TCP segment (start sequence number = 101536) is transmitted



Client_Socket Interfaces (TCP Fast Retransmit and Fast Recovery)
Client Node Internet Server Node

Client Net Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

14-Apr-02 20:19 (Page 11)

TCP_Segment
seq_num = _102048

TCP segment (start sequence number = 102048) is transmitted

TCP_Segment
seq_num = _102560

TCP segment (start sequence number = 102560) is transmitted

TCP_Segment
seq_num = _103072

TCP segment (start sequence number = 103072) is transmitted

TCP_Segment
seq_num = _103584

TCP segment (start sequence number = 103584) is transmitted

Fast Retransmit: TCP receives duplicate acks and it decides to retransmit the segment, without waiting for the segment
timer to expire. This speeds up recovery of the lost segment

ACK
ack_num = _100512

Client receives acknowledgement to the segment with starting
sequence number 100512

ACK
ack_num = _100512

First duplicate ack is received. TCP does not know if this ack
has been duplicated due to out of sequence delivery of
segments or the duplicate ack is caused by lost segment.

Fast Retransmit At this point TCP moves to the fast retransmit state. TCP will
look for duplicate acks to decide if a segment needs to be
retransmitted

Note: TCP segments sent by the sender can be delivered out of
sequence to the receiver. This can also result in duplicate acks.
Thus TCP waits for 3 duplicate acks before concluding that a
segment has been missed.

ACK
ack_num = _100512

Second duplicate ack is received

ACK
ack_num = _100512

Third duplicate ack is received. TCP now assumes that
duplicate acks point to a segment that has been lost

ssthresh = cwnd/2 =
70000/2 = 35000

TCP uses the current congestion window to mark the point of
congestion. It saves the slow start threshold as half of the
current congestion window size. If current cwnd is less than 4
segments, cwnd is set to 2 segments

TCP_Segment
seq_num = _100512

TCP retransmits the missing segment i.e. the segment
corresponding to the ack sequence number in the duplicate acks

Fast Recovery: Once the lost segment has been transmitted, TCP tries to maintain the current data flow by not going back
to slow start. TCP also adjusts the window for all segments that have been buffered by the receiver.

Fast Recovery In "Fast Recovery" state, TCPs main objective is to maintain
the current data stream data flow.

cwnd = ssthresh + 3
segments = 35000 +

3*512 = 36536

Since TCP started taking action on the third duplicate ack, it
sets the congestion window to ssthresh + 3 segment. This halfs
the TCP window size and compensates for the TCP segments
that have already been buffered by the receiver.

ACK
ack_num = _100512

Another duplicate ack is received. This means that the receiver
has buffered one more segment

cwnd = cwnd + 1 segment
= 37048

TCP again inflates the congestion window to compensate for
the delivered segment

ACK
ack_num = _100512

Yet another ack is received, this will further inflate the
congestion window

cwnd = cwnd + 1 segment
= 37560

ACK
ack_num = _104096

The cummulative TCP ack is delivered to the client

Congestion Avoidance

Congestion
Avoidance

The connection has moved back to the congestion avoidance
state.

cwnd = ssthresh = 35000 TCP takes a congestion avoidance action and sets the segment
size back to the slow start threshold. The TCP window will
now increase by a maximum of one segment per round trip



Client_Socket Interfaces (TCP Fast Retransmit and Fast Recovery)
Client Node Internet Server Node

Client Net Server
Client App Client

Socket
Network Server

Socket
Server App

EventHelix.com/EventStudio 1.0

14-Apr-02 20:19 (Page 12)

LEG: Client initiates TCP connection close 

Client initiates TCP connection close

Close Client application wishes to release the TCP connection

FIN Client sends a TCP segment with the FIN bit set in the TCP
header

FIN Wait 1 Client changes state to FIN Wait 1 state

ACK Client receives the ACK

FIN Wait 2 Client changes state to FIN Wait 2. In this state, the TCP
connection from the client to server is closed. Client now waits
close of TCP connection from the server end

FIN Client receives FIN

ACK Client sends ACK

Close_Timer Client starts a timer to handle scenarios where the last ack has
been lost and server resends FIN

Time Wait Client waits in Time Wait state to handle a FIN retry

delete

Close_Timer Close timer has expired. Thus the client end connection can be
closed too.

Closed

delete


	EventStudio 1.0
	TCP Connection Setup and Release
	About TCP
	Client initiates TCP connection
	Short data transfer
	Client initiates TCP connection close

	TCP Slow Start
	About TCP Slow Start
	Client initiates TCP connection
	TCP Slow Start
	Client initiates TCP connection close

	TCP Congestion Avoidance
	About TCP Congestion Avoidance
	Client initiates TCP connection
	TCP Congestion Avoidance Operation
	Client initiates TCP connection close

	TCP Fast Retransmit and Fast Recovery
	About Fast Retransmit and Fast Recovery
	Client initiates TCP connection
	Fast Retransmit and Recovery
	Client initiates TCP connection close


