HYBRID ARQ IN WIRELESS NETWORKS

Emina Soljanin Mathematical Sciences Research Center, Bell Labs

June 20, 2003

R. Liu and P. Spasojevic WINLAB

ACKNOWLEDGEMENTS 1xEVDV

1

Alexei Ashikhmin Jaehyiong Kim Sudhir Ramakrishna Adriaan van Wijngaarden

AUTOMATIC REPEAT REQUEST

- The receiving end detects frame errors and requests retransmissions.
- P_e is the frame error rate, the average number of transmissions is

$$1 \cdot (1 - P_e) + \dots + n \cdot P_e^{n-1} (1 - P_e) + \dots = \frac{1}{1 - P_e}$$

- Hybrid ARQ uses a code that can correct some frame errors.
- In HARQ schemes
 - the average number of transmissions is reduced, but
 - each transmission carries redundant information.

• Decoding the name of an information theorist from its noisy version:

EMRE

• Decoding the name of an information theorist from its noisy version:

EMRE

• Decoding the name of an information theorist from its noisy version:

• Decoding the name of an information theorist from its noisy version:

- Increasing redundancy:
 - E M R E

• Decoding the name of an information theorist from its noisy version:

- Increasing redundancy:
 - EMRE TELATAR

• Decoding the name of an information theorist from its noisy version:

- Increasing redundancy:
 - E M R E T E L A T A R I M R E

• Decoding the name of an information theorist from its noisy version:

- Increasing redundancy:
 - EMRETELATARIMRECSISZAR

THROUGHPUT IN HYBRID ARQ BPSK, AWGN, BCH Coded

• Puncturing:

EMRE TELATAR

• Puncturing:

EMRE TELATAR

• Rate compatible:

M R E

• Puncturing:

EMRE TELATAR

• Rate compatible:

M R E A R

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

MRETELA AR

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

E M R E T E L A T A R

• Puncturing:

EMRE TELATAR

• Rate compatible:

EMRE TELATAR

• Not rate compatible:

M R E

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

EMRE TELATAR

• Not rate compatible:

M E A R

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

EMRE TELATAR

• Not rate compatible:

M E T E L A A

• Puncturing:

EMRE TELATAR

• Rate compatible:

EMRE TELATAR

• Not rate compatible:

E E T E L T A

• Puncturing:

EMRE TELATAR

• Rate compatible:

EMRE TELATAR

• Not rate compatible:

E E T E L T A

- Information bits are encoded by a (low rate) mother code.
- Information and a selected number of parity bits are transmitted.
- If a retransmission is not successful:
 - transmitter sends additional selected parity bits
 - receiver puts together the new bits and those previously received.
- Each retransmission produces a codeword of a stronger code.
- Family of codes obtained by puncturing of the mother code.

THROUGHPUT IN HYBRID ARQ

RANDOMLY PUNCTURED CODES

- The mother code is an (n, k) rate R turbo code.
- Each bit is punctured independently with probability λ .
- The expected rate of the punctured code is $R/(1 \lambda)$.
- For large n we have

A FAMILY OF RANDOMLY PUNCTURED CODES ¹⁰ Rate Compatible Puncturing

- The mother code is an (n, k) rate R turbo code.
- λ_j for j = 1, 2, ..., m are puncturing rates, $\lambda_j > \lambda_k$ for j < k.
- If the *i*-th bit is punctured in the *k*-th code and *j* < *k*, then it was punctured in the *j*-th code.
- θ_i for i = 1, 2, ..., n are uniformly distributed over [0, 1].
- If $\theta_i < \lambda_l$, then the *i*-th bit is punctured in the *l*-th code.

MEMORYLESS CHANNEL MODEL

- Binary input alphabet $\{0,1\}$ and output alphabet \mathcal{Y} .
- Constant in time with transition probabilities W(b|0) and W(b|1), $b \in \mathcal{Y}$.
- Time varying with transition probabilities at time $i W_i(b|0)$ and $W_i(b|1)$, $b \in \mathcal{Y}$.
- $W_i(\cdot|0)$ and $W_i(\cdot|1)$ are known at the receiver.

PERFORMANCE MEASURE Time Invariant Channel

- Sequence $\boldsymbol{x} \in \mathcal{C} \subseteq \{0,1\}^n$ is transmitted, and $\boldsymbol{x'}$ decoded.
- Sequences x and x' are at Hamming distance d.
- The probability of error $P_e(\boldsymbol{x}, \boldsymbol{x'})$ can be bounded as

$$P_e(\boldsymbol{x}, \boldsymbol{x'}) \leq \gamma^d = \exp\{-d\alpha\},\$$

where γ is the Bhattacharyya noise parameter:

$$\gamma = \sum_{b \in \mathcal{Y}} \sqrt{W(b|0)W(b|1)}$$

and $\alpha = -\log \gamma$ is the Bhattacharyya distance.

PERFORMANCE MEASURE

- An (n, k) binary linear code C with A_d codewords of weight d.
- The union-Bhattacharyya bound on word error probability:

$$P_W^{\mathcal{C}} \le \sum_{d=1}^n A_d e^{-\alpha d}$$

- Weight distribution A_d for a turbo code?
- Consider a set of codes $[\mathcal{C}]$ corresponding to all interleavers.
- Use the average $\overline{A}_d^{[\mathcal{C}](n)}$ instead of A_d for large n.

TURBO CODE ENSEMBLES A Coding Theorem by Jin and McEliece

• There is an ensemble distance parameter $c_0^{[\mathcal{C}]}$ s.t. for large n,

$$\overline{A}_d^{[\mathcal{C}](n)} \leq \exp\left(dc_0^{[\mathcal{C}]}\right)$$
 for large enough d .

• For a channel whose Bhattacharyya distance $\alpha > c_0^{[\mathcal{C}]}$, we have

$$\overline{P}_W^{[\mathcal{C}](n)} = O(n^{-\beta}).$$

• $c_0^{[\mathcal{C}]}$ is the ensemble noise threshold.

PUNCTUREDTURBO CODE ENSEMBLES

• Is there the punctured ensemble noise threshold $c_0^{[\mathcal{C}_P]}$:

$$\overline{A}_j^{[\mathcal{C}_P](n)} \leq \expig(jc_0^{[\mathcal{C}_P]}ig)$$
 for large enough n and j .

• The expected number of codewords of weight *j*:

$$\overline{A}_{j}^{[\mathcal{C}_{P}](n)} = \sum_{d \ge j} \overline{A}_{d}^{[\mathcal{C}](n)} \binom{d}{j} \lambda^{d-j} (1-\lambda)^{j}$$

• If $\log \lambda < -c_0^{[\mathcal{C}]}$,

$$c_0^{[\mathcal{C}_P]} \le \log\left[\frac{1-\lambda}{\exp\left(-c_0^{[\mathcal{C}]}\right)-\lambda}
ight]$$

•

PUNCTUREDTURBO CODE ENSEMBLES

HARQ MODEL

- There are at most m transmissions.
- $\mathcal{I} = \{1, \ldots, n\}$ is the set indexing the bit positions in a codeword.
- \mathcal{I} is partitioned in m subsets $\mathcal{I}(j)$, for $1 \leq j \leq m$.
- Bits at positions in $\mathcal{I}(j)$ are transmitted during *j*-th transmission.
- The channel remains constant during a single transmission:

 $\gamma_i = \gamma(j)$ for all $i \in \mathcal{I}(j)$.

PERFORMANCE MEASURE Time Varying Channel

- Let $W^n(\boldsymbol{y}|\boldsymbol{x}) = \prod_{i=1}^n W_i(y_i|x_i).$
- Sequence $\boldsymbol{x} \in \mathcal{C} \subseteq \{0,1\}^n$ is transmitted, and $\boldsymbol{x'}$ decoded.
- The probability of error $P_e(\boldsymbol{x}, \boldsymbol{x'})$ can be bounded as

$$\begin{aligned} P_{e}(\boldsymbol{x}, \boldsymbol{x'}) &\leq \sum_{\boldsymbol{y} \in \mathcal{Y}^{n}} \sqrt{W^{n}(\boldsymbol{y}|\boldsymbol{x})W^{n}(\boldsymbol{y}|\boldsymbol{x'})} \\ &= \prod_{i=1}^{n} \left(\sum_{b \in \mathcal{Y}} \sqrt{W_{i}(b|x_{i})W_{i}(b|x'_{i})} \right) \\ &\leq \prod_{i:x_{i} \neq x'_{i}} \gamma_{i} \end{aligned}$$

HARQ PERFORMANCE

- d_j is the Hamming distance between x and x' over $\mathcal{I}(j)$.
- The probability of error $P_e({m x},{m x'})$ can be bounded as

$$P_e(\boldsymbol{x}, \boldsymbol{x'}) \leq \prod_{j=1}^m \gamma(j)^{d_j}$$

- $A_{d_1...d_m}$ is the number of codewords with weight d_j over $\mathcal{I}(j)$.
- The union bound on the ML decoder word error probability:

$$P \le \sum_{d_1=1}^{|\mathcal{I}(1)|} \cdots \sum_{d_m=1}^{|\mathcal{I}(m)|} A_{d_1...d_m} \prod_{j=1}^m \gamma(j)^{d_j}$$

HARQ PERFORMANCE Random Transmission Assignment

- A bit is assigned to transmission j with probability α_j .
- *d* is the weight of the original codeword.
- d_j is the weight of the *d*-th transmission sub-word.
- The probability that the sub-word weights are $d_1, d_2 \dots, d_m$ is

$$\binom{d}{d_1}\binom{d-d_1}{d_2}\dots\binom{d-d_1\cdots-d_{m-1}}{d_m}\alpha_1^{d_1}\alpha_2^{d_2}\dots\alpha_m^{d_m}$$

HARQ PERFORMANCE Random Transmission Assignment

• The union bound on the ML decoder word error probability:

$$P \leq \sum_{d_1=1}^{|\mathcal{I}(1)|} \cdots \sum_{d_m=1}^{|\mathcal{I}(m)|} A_{d_1 \dots d_m} \prod_{j=1}^m \gamma(j)^{d_j}$$

• The expected value of the union bound is

$$\sum_{d} A_{d} \left(\sum_{j=1}^{m} \gamma(j) \alpha_{j} \right)^{d}.$$

• The average Bhattacharyya noise parameter:

$$\overline{\gamma} = \sum_{j=1}^{m} \gamma(j) \alpha_j$$

A RANDOMLY PUNCTURED TURBO CODE An Example of Random Transmission Assignment

- The puncturing probability is λ .
- Transmission over the channel with noise parameter γ .
- Equivalent to having two transmissions:
 - first with assignment probability (1λ) and noise parameter γ ;
 - second with assignment probability λ and noise parameter 1.
- The average noise parameter is $\overline{\gamma} = (1 \lambda)\gamma + \lambda$.
- The requirement $-\log \overline{\gamma} > c_0^{[\mathcal{C}]}$ translates into

$$-\log \gamma > \log \left[\frac{1-\lambda}{\exp\left(-c_0^{[\mathcal{C}]}\right) - \lambda} \right]$$

INCREMENTAL REDUNDANCY Concluding Remarks

