HYBRID ARQ IN WIRELESS NETWORKS

Emina Soljanin Mathematical Sciences Research Center, Bell Labs

June 20, 2003

R. Liu and P. Spasojevic WINLAB

ACKNOWLEDGEMENTS FOR A CHARACTERY AND ALL AND ALL AND ADDRESS TO A LADY A LARGE MILITARY CONTACT A LA 1xEVDV

Alexei Ashikhmin Jaehyiong Kim Sudhir Ramakrishna Adriaan van Wijngaarden

AUTOMATIC REPEAT REQUEST

- The receiving end detects frame errors and requests retransmissions.
- P_e is the frame error rate, the average number of transmissions is

$$
1 \cdot (1 - P_e) + \dots + n \cdot P_e^{n-1} (1 - P_e) + \dots = \frac{1}{1 - P_e}
$$

- Hybrid ARQ uses a code that can correct some frame errors.
- In HARQ schemes
	- the average number of transmissions is reduced, but
	- each transmission carries redundant information.

• Decoding the name of an information theorist from its noisy version:

• Decoding the name of an information theorist from its noisy version:

• Decoding the name of an information theorist from its noisy version:

• Decoding the name of an information theorist from its noisy version:

- Increasing redundancy:
	- E M R E

• Decoding the name of an information theorist from its noisy version:

- Increasing redundancy:
	- E M R E T E L A T A R

• Decoding the name of an information theorist from its noisy version:

- Increasing redundancy:
	- E M R E T E L A T A R I M R E

• Decoding the name of an information theorist from its noisy version:

- Increasing redundancy:
	- E M R E T E L A T A R I M R E C S I S Z A R

THROUGHPUT IN HYBRID ARQ BPSK, AWGN, BCH Coded

• Puncturing:

E M R E T E L A T A R

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

M R E

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

M R E A R

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

M R E T E L A A R

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

E M R E T E L A T A R

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

E M R E T E L A T A R

• Not rate compatible:

M R E

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

E M R E T E L A T A R

• Not rate compatible:

M E A R

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

E M R E T E L A T A R

• Not rate compatible:

M E T E L A A

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

E M R E T E L A T A R

• Not rate compatible:

E E T E L T A

• Puncturing:

E M R E T E L A T A R

• Rate compatible:

E M R E T E L A T A R

• Not rate compatible:

E E T E L T A

- Information bits are encoded by a (low rate) mother code.
- Information and a selected number of parity bits are transmitted.
- If a retransmission is not successful:
	- transmitter sends additional selected parity bits
	- receiver puts together the new bits and those previously received.
- Each retransmission produces a codeword of a stronger code.
- Family of codes obtained by puncturing of the mother code.

THROUGHPUT IN HYBRID ARQ

RANDOMLY PUNCTURED CODES **SECURED**

- The mother code is an (n, k) rate R turbo code.
- Each bit is punctured independently with probability λ .
- The expected rate of the punctured code is $R/(1 \lambda)$.
- For large n we have

A FAMILY OF RANDOMLY PUNCTURED CODES Rate Compatible Puncturing

- The mother code is an (n, k) rate R turbo code.
- λ_j for $j = 1, 2, \ldots, m$ are puncturing rates, $\lambda_j > \lambda_k$ for $j < k$.
- If the *i*-th bit is punctured in the *k*-th code and $j < k$, then it was punctured in the j -th code.
- θ_i for $i = 1, 2, \ldots, n$ are uniformly distributed over [0, 1].
- If $\theta_i < \lambda_l$, then the *i*-th bit is punctured in the *l*-th code.

MEMORYLESS CHANNEL MODEL 11

- Binary input alphabet $\{0,1\}$ and output alphabet $\mathcal Y$.
- Constant in time with transition probabilities $W(b|0)$ and $W(b|1)$, $b \in \mathcal{Y}$.
- Time varying with transition probabilities at time i $W_i(b|0)$ and $W_i(b|1)$, $b \in \mathcal{Y}$.
- $W_i(\cdot|0)$ and $W_i(\cdot|1)$ are known at the receiver.

PERFORMANCE MEASURE 12 Time Invariant Channel

- Sequence $\boldsymbol{x}\in\mathcal{C}\subseteq\{0,1\}^n$ is transmitted, and $\boldsymbol{x'}$ decoded.
- \bullet Sequences \boldsymbol{x} and $\boldsymbol{x'}$ are at Hamming distance d .
- \bullet The probability of error $P_e(\bm{x}, \bm{x'})$ can be bounded as

$$
P_e(\boldsymbol{x}, \boldsymbol{x'}) \leq \gamma^d = \exp\{-d\alpha\},
$$

where γ is the Bhattacharyya noise parameter:

$$
\gamma = \sum_{b \in \mathcal{Y}} \sqrt{W(b|0)W(b|1)}
$$

and $\alpha = -\log \gamma$ is the Bhattacharyya distance.

PERFORMANCE MEASURE 13

- An (n, k) binary linear code C with A_d codewords of weight d.
- The union-Bhattacharyya bound on word error probability:

$$
P_W^{\mathcal{C}} \le \sum_{d=1}^n A_d e^{-\alpha d}.
$$

- Weight distribution A_d for a turbo code?
- Consider a set of codes \mathcal{C} corresponding to all interleavers.
- \bullet Use the average A $[\mathcal{C}](n)$ $\frac{d}{d}$ instead of A_d for large n .

TURBO CODE ENSEMBLES 14 A Coding Theorem by Jin and McEliece

• There is an ensemble distance parameter $c_0^{[\mathcal{C}]}$ $\frac{1}{0}$ s.t. for large n ,

$$
\overline{A}_d^{[{\mathcal C}](n)} \le \exp\bigl(d c_0^{[{\mathcal C}]}\bigr) \quad \text{for large enough } d.
$$

 \bullet For a channel whose Bhattacharyya distance $\alpha > c_0^{[\mathcal{C}]}$, we have

$$
\overline{P}_W^{[\mathcal{C}](n)}=O(n^{-\beta}).
$$

 \bullet $c_0^{[\mathcal{C}]}$ $\frac{1}{10}$ is the ensemble noise threshold.

PUNCTUREDTURBO CODE ENSEMBLES 15

• Is there the punctured ensemble noise threshold $c_0^{[C_P]}$ $\begin{bmatrix} \n\mathbf{C} P \n\end{bmatrix}$

$$
\overline{A}_j^{[\mathcal{C}_P](n)} \leq \exp\bigl(jc_0^{[\mathcal{C}_P]}\bigr) \ \ \text{for large enough n and j.}
$$

• The expected number of codewords of weight j :

$$
\overline{A}_{j}^{[\mathcal{C}_{P}](n)} = \sum_{d \ge j} \overline{A}_{d}^{[\mathcal{C}](n)} {d \choose j} \lambda^{d-j} (1 - \lambda)^{j}
$$

• If $\log \lambda < -c_0^{[\mathcal{C}]}$ $\begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$
c_0^{[\mathcal{C}_P]} \le \log \left[\frac{1 - \lambda}{\exp\left(-c_0^{[\mathcal{C}]}\right) - \lambda} \right]
$$

.

PUNCTUREDTURBO CODE ENSEMBLES 16

HARQ MODEL 17

- There are at most m transmissions.
- $\mathcal{I} = \{1, \ldots, n\}$ is the set indexing the bit positions in a codeword.
- $\mathcal I$ is partitioned in m subsets $\mathcal I(j)$, for $1 \leq j \leq m$.
- Bits at positions in $\mathcal{I}(j)$ are transmitted during j-th transmission.
- The channel remains constant during a single transmission:

 $\gamma_i = \gamma(j)$ for all $i \in \mathcal{I}(j)$.

PERFORMANCE MEASURE 18 Time Varying Channel

- Let $W^n({\boldsymbol{y}}|{\boldsymbol{x}}) = \prod_{i=1}^n W_i(y_i|x_i).$
- Sequence $\boldsymbol{x}\in\mathcal{C}\subseteq\{0,1\}^n$ is transmitted, and $\boldsymbol{x'}$ decoded.
- \bullet The probability of error $P_e(\bm{x}, \bm{x'})$ can be bounded as

$$
P_e(\boldsymbol{x}, \boldsymbol{x'}) \leq \sum_{\boldsymbol{y} \in \mathcal{Y}^n} \sqrt{W^n(\boldsymbol{y}|\boldsymbol{x})W^n(\boldsymbol{y}|\boldsymbol{x'})} \\ = \prod_{i=1}^n \Bigl(\sum_{b \in \mathcal{Y}} \sqrt{W_i(b|x_i)W_i(b|x'_i)}\Bigr) \\ \leq \prod_{i: x_i \neq x'_i} \gamma_i
$$

HARQ PERFORMANCE 19

- \bullet d_j is the Hamming distance between \bm{x} and $\bm{x'}$ over $\mathcal{I}(j)$.
- \bullet The probability of error $P_e(\bm{x}, \bm{x'})$ can be bounded as

$$
P_e(\bm{x}, \bm{x'}) \leq \prod_{j=1}^m \gamma(j)^{d_j}
$$

- $A_{d_1...d_m}$ is the number of codewords with weight d_i over $\mathcal{I}(j)$.
- The union bound on the ML decoder word error probability:

$$
P \le \sum_{d_1=1}^{|\mathcal{I}(1)|} \cdots \sum_{d_m=1}^{|\mathcal{I}(m)|} A_{d_1...d_m} \prod_{j=1}^m \gamma(j)^{d_j}
$$

HARQ PERFORMANCE 20 Random Transmission Assignment

- A bit is assigned to transmission j with probability α_j .
- \bullet d is the weight of the original codeword.
- d_i is the weight of the d -th transmission sub-word.
- The probability that the sub-word weights are $d_1, d_2 \ldots, d_m$ is

$$
\binom{d}{d_1}\binom{d-d_1}{d_2}\cdots\binom{d-d_1\cdots-d_{m-1}}{d_m}\alpha_1^{d_1}\alpha_2^{d_2}\ldots\alpha_m^{d_m}
$$

HARQ PERFORMANCE 21 Random Transmission Assignment

• The union bound on the ML decoder word error probability:

$$
P \leq \sum_{d_1=1}^{|\mathcal{I}(1)|} \cdots \sum_{d_m=1}^{|\mathcal{I}(m)|} A_{d_1...d_m} \prod_{j=1}^m \gamma(j)^{d_j}
$$

• The expected value of the union bound is

$$
\sum_{d} A_d \Bigl(\sum_{j=1}^m \gamma(j)\alpha_j\Bigr)^d.
$$

• The average Bhattacharyya noise parameter:

$$
\overline{\gamma} = \sum_{j=1}^{m} \gamma(j) \alpha_j
$$

A RANDOMLY PUNCTURED TURBO CODE ²² An Example of Random Transmission Assignment

- The puncturing probability is λ .
- Transmission over the channel with noise parameter γ .
- Equivalent to having two transmissions:
	- first with assignment probability (1λ) and noise parameter γ ;
	- second with assignment probability λ and noise parameter 1.
- The average noise parameter is $\overline{\gamma} = (1 \lambda)\gamma + \lambda$.
- \bullet The requirement $-\log\overline{\gamma} > c_0^{[\mathcal{C}]}$ translates into

$$
-\log\gamma > \log\left[\frac{1-\lambda}{\exp\left(-c_0^{[\mathcal{C}]}\right)-\lambda}\right]
$$

.

²³ INCREMENTAL REDUNDANCY Concluding Remarks

