
OpenH323 Gatekeeper - The GNU Gatekeeper
Maintainer of this manual: Jan Willamowius <jan@willamowius.de>

This is the User Manual how to compile, install, con�gure and monitor OpenH323 Gatekeeper - The GNU
Gatekeeper.

Contents

1 Introduction 3
1.1 About . 3

1.2 Copyright . 4

1.3 Name . 4

1.4 Features . 4

1.5 Download . 8

1.6 Mailing Lists . 9

1.7 Contributors . 9

2 Compiling and Installing 9
2.1 Compiling the Gatekeeper . 9

2.2 The addpasswd Utility . 11

2.3 Installing the Gatekeeper . 11

2.4 Pre-Built Binaries . 11

3 Getting Started (Tutorial) 12
3.1 A �rst simple experiment . 12

3.2 Using the Status interface to monitor the gatekeeper . 12

3.3 Starting the gatekeeper in routed mode . 13

3.4 A virtual PBX: Disconnecting calls . 13

3.5 Routing calls over a gateway to reach external users . 14

3.6 Rewriting E.164 numbers . 14

4 Basic Gatekeeper Con�guration 15
4.1 Command Line Options . 15

4.1.1 Basic . 16

4.1.2 Gatekeeper Mode . 16

4.1.3 Debug Information . 17

4.2 Con�guration File . 17

4.2.1 Section [Gatekeeper::Main] . 17

CONTENTS 2

4.2.2 Section [GkStatus::Auth] . 20

4.2.3 Section [LogFile] . 21

4.2.4 Section [RoutedMode] . 22

4.2.5 Section [Proxy] . 25

5 Routing Con�guration 26
5.1 Section [RoutingPolicy] . 26

5.2 Section [RasSrv::RewriteE164] . 27

5.3 Section [RasSrv::GWRewriteE164] . 28

5.4 Section [Endpoint::RewriteE164] . 28

5.5 Section [Routing::NumberAnalysis] . 29

5.6 Section [RewriteCLI] . 30

6 RAS Con�guration 33
6.1 Section [RasSrv::GWPre�xes] . 33

6.2 Section [RasSrv::PermanentEndpoints] . 34

6.3 Section [RasSrv::RRQFeatures] . 34

6.4 Section [RasSrv::ARQFeatures] . 35

6.5 Section [NATedEndpoints] . 35

7 Authentication Con�guration 35
7.1 Section [Gatekeeper::Auth] . 35

7.2 Section [FileIPAuth] . 37

7.3 Section [SimplePasswordAuth] . 38

7.4 Section [SQLPasswordAuth] . 38

7.5 Section [RasSrv::RRQAuth] . 39

7.6 Section [SQLAliasAuth] . 40

7.7 Section [SQLAuth] . 41

7.8 Section [Pre�xAuth] . 43

7.9 Section [RadAuth] . 44

7.10 Section [RadAliasAuth] . 46

8 Accounting Con�guration 48
8.1 Section [Gatekeeper::Acct] . 48

8.2 Section [FileAcct] . 50

8.3 Section [RadAcct] . 52

8.4 Section [SQLAcct] . 54

1. Introduction 3

9 Neighbor Con�guration 56
9.1 Section [RasSrv::Neighbors] . 56

9.2 Section [RasSrv::LRQFeatures] . 57

9.2.1 Section [Neighbor::...] . 58

10 Per-Endpoint Con�guration 59
10.1 Section [EP::...] . 59

11 Advanced Con�guration 59
11.1 Section [CallTable] . 59

11.2 Section [Endpoint] . 60

11.3 Section [CTI::Agents] . 62

11.4 Section [SQLCon�g] . 63

12 Monitoring the Gatekeeper 65
12.1 Status Port . 65

12.1.1 Application Areas . 65

12.1.2 Examples . 66

12.1.3 GUI for the Gatekeeper . 67

12.2 Commands (Reference) . 67

12.3 Messages (Reference) . 72

1 Introduction

1.1 About

OpenH323 Gatekeeper - The GNU Gatekeeper <http://www.gnugk.org/> is an open-source project
that implements an H.323 gatekeeper. A gatekeeper provides call control services to the H.323 endpoints.
It is an integral part of most usefull internet telephony installations that are based on the H.323 standard.

According to Recommendation H.323, a gatekeeper shall provide the following services:

• Address Translation

• Admissions Control

• Bandwidth Control

• Zone Management

• Call Control Signaling

• Call Authorization

• Bandwidth Management

• Call Management

1. Introduction 4

The GNU Gatekeeper implements most of these functions based on the OpenH323 <http://sourceforge.
net/projects/openh323> protocol stack.

Recommendation H.323 is an international standard published by the ITU <http://www.itu.int/>. It is
a communications standard for audio, video, and data over the Internet. See also Paul Jones' A Primer on
the H.323 Series Standard <http://www.packetizer.com/voip/h323/papers/primer>.

For a detailed description of what a gatekeeper does, see here <http://www.iec.org/online/tutorials/
h323/topic06.html>.

1.2 Copyright

It is covered by the GNU General Public License (GNU GPL). In addition to that, we explicitely grant the
right to link this code to the OpenH323 and OpenSSL library.

Generally speaking, the GNU GPL allows you to copy, distribute, resell or modify the softwares, but it
requires that all derived works must be published under GNU GPL also. That means that you must publish
full source for all extensions to the gatekeeper and for all programs you include the gatekeeper into. See the
�le COPYING for details.

If that's not what you want, you must interface to the gatekeeper through the status port and communicate
via TCP with it. That way you only have to integrate the basic funtionality into the gatekeeper (and provide
source for that) and can keep other parts of your application private.

1.3 Name

The formal name of this project is OpenH323 Gatekeeper - The GNU Gatekeeper , short GnuGk . Please
don't confuse it with other gatekeeper projects.

There are several open-source gatekeeper projects based on the OpenH323 protocol stack.

• OpenGatekeeper <http://opengatekeeper.sourceforge.net/>

A gatekeeper available under MPL. The project has been inactive for a period of time
now.

• OpenGK <http://sourceforge.net/projects/openh323>

Only in a very primary grades.

• OpenH323 Gatekeeper - The GNU Gatekeeper <http://www.gnugk.org/>

This one, also called GnuGk.

To have di�erent gatekeepers with very similar names is really confusing for most users. Since our "OpenH323
Gatekeeper" was the �rst on the scene, it is not our fault that others have chosen similar names. But to make
the destinction a little more clear without confusing people even more, we have decided to give the project
a subtitle "OpenH323 Gatekeeper - The GNU Gatekeeper" and start using gnugk as name for executables.

1.4 Features

The version 2.2.3 contains the following new features and bug�xes:

• New [RewriteCLI] options to control CLIR features precisely.

1. Introduction 5

• New CLIR/CLIP (Calling Line Identi�cation Restriction/Presentation) features in the [RewriteCLI]
module. Ability to hide CLI (enable CLIR/CLIP) per endpoint.

• New [RoutedMode] SocketCleanupTimeout con�g variable. More reliable socket management and
better network error reporting.

• The RewriteCLImodule rewrites outbound rules correctly for random numbers separated by commans.

• Broadcast request are handled correctly in the LARGE_FDSET mode.

• New ENUM routing policy from Simon Horne.

• NetMeeting compatibility problems �xed.

• A new [RasSrv::RRQFeatures] IRQPollCount con�g variable. Default number of "poll" IRQ mes-
sages changed from 2 to 1 to allow faster endpoint unregistration.

• Tunnelled H.245 messages were not processed correctly (were ignored).

• 7.2 ([FileIPAuth]) module moved from the contrib section into the main branch.

The version 2.2.2 contains the following new features and bug�xes:

• New CLI rewrite types - pre�x replacement (*=) and identity match (=).

• A new TranslateFacility con�g variable to enable Facility message conversion between H.323v4 and
previous versions of the protocol.

• SignalTimeout, AlertingTimeout and %t, %p, %{ring-time}, %{alerting-time} accounting vari-
ables ported from 2.0 branch. ConnectTimeout con�g variable replaced with SignalTimeout and
AlertingTimeout.

• A new %r accounting variable to provide infomation about who was the one that disconnected a call.

• A new, generic 7.7 (SQLAuth) module for RRQ, ARQ, LRQ and Setup authentication and authoriza-
tion.

• New �core command line argument to enable core dump generation for Unix.

• A new Vendor con�g variable for 11.2 ([Endpoint]) section to provide vendor speci�c extensions when
registering with a parent gatekeeper.

• LRQ nonStandardData �eld was not included for CiscoGK neighbors.

• New 5.6 ([RewriteCLI]) con�g section that allows arbitrary rewritting of ANI/CLI numbers.

• New 5.5 (numberanalysis) routing policy.

• New FileIPAuth module in the contrib/ipauth directory.

• Call accounting updates/call disconnect handling is now more robust and does not lock the whole call
table and (e�ectively) the gatekeeper for long time periods.

• Do not support mutiple rewrite targets, as this feature does not work well if rewrite is performed more
than once.

• The gatekeeper could crash if the connection was closed before the welcome message has been sent to
the client.

1. Introduction 6

• Di�erent Username was reported during Setup auth and acct step, if no sourceAddress has been present
for an unregistered call.

• More missing con�g reload locks added to allow seamless con�g reload.

• A default value for the con�g variable ForwardOnFacility changed to 0.

• Ability to encrypt all passwords in the con�g. A new EncryptAllPasswords con�g variable, KeyFilled
con�g variable usage extended.

• Ability to read con�g settings from an SQL database ported from 2.0 branch. Read 11.4 ([SQLCon�g])
for more details.

• Framed-IP-Address could not be determined for unregistered calls with no Setup-
UUIE.sourceCallSignalAddress �eld, causing authentication to fail.

• Provide proper handling of aliases of type partyNumber (e164Number or privateNumber).

• A �x for RTP/Q931/H245/T120PortRange to correct a bug with port range wraparound if the last
port is 65535. This caused a next port to be set to 0 and any subsequent port allocation to fail.

• Dynamic allocation of RTP ports did not work, use a �xed port range 1024-65535 as a default for the
RTPPortRange con�g variable.

• Obsolete auth modules MySQLAliasAuth and MySQLPasswordAuth are now removed.

• SQL modules accept only one database host in the Host parameter.

The version 2.2.1 contains the following new features and bug�xes:

• Enchanced pre�x matching for routing policies. A dot (.) matches any digit.

• Enchanced pre�x matching for neighbors. A dot (.) matches any digit, ! at the beginning disables
the pre�x.

• A missing lock during con�g reload caused the gatekeeper to crash.

• More reliable port number selection for Q.931, H.245, T.120 and RTP port ranges (earlier, a con�g
reload could cause many calls to fail because of unability to allocate a new socket).

• Default value for RTPPortRange is now to let the OS select a port number.

• More �exible rewrite rules (both global and per-gw) with new '.' and '%' wildcard characters.

• Enchanced pre�x matching for gateways. A dot (.) matches any digit, ! at the beginning disables the
pre�x.

• Insert missing Calling-Party-Number-IE/Display-IE if corresponing Screen... options are enabled.

• Shutdown the gatekeeper if there are errors in SQL auth/acct modules con�guration.

• Called-Station-Id number type can be selected between the original one (dialed number) and the
rewritten one. New UseDialedNumber con�g option for 7.9 (RadAuth)/7.10 (RadAliasAuth) /8.3
(RadAcct) modules, new %{Dialed-Number} variable for 8.4 (SQLAcct) and 8.2 (FileAcct) modules.

• Ability to customize timestamp formats. New TimestampFormat con�g variables for main, 8.4
([SqlAcct]), 8.3 ([RadAcct]), 8.2 ([FileAcct]) and 11.1 ([CallTable]) sections.

• RadAuth/RadAliasAuth modules can now add/remove endpoint aliases during endpoint registration
(using h323-ivr-in=terminal-alias: Cisco AV-Pair).

1. Introduction 7

• New TcpKeepAlive option to solve the problem with network errors and calls hanging in the call table.
See docs/keepalive.txt for more details.

• New status port RouteToGateway command.

The version 2.2.0 contains the following new features and bug�xes:

• New RoundRobinGateways con�g option.

• Call capacity limits and priority routing for gateways. New EP:: con�g sections for per-endpoint
con�guration settings (see 10 (Per-Endpoint Con�guration Settings)).

• RTP proxy handling moved to a separate RTP proxy threads, so processing of signaling messages does
not block RTP packets. New RtpHandlerNumber con�g option.

• REUSE_ADDRESS option enabled on listening sockets in non-LARGE_FDSET mode to �x a bug
with the gatekeeper being unable to open listening ports after restart.

• Ability to set call destination in auth modules. RADIUS based call routing.

• Support for SqlBill tari� table import from an OpenO�ce.org Calc spreadsheet.

• Fixed sourceInfo LRQ �eld handling - now it contains an H.323 identi�er of the gatekeeper. Nonstan-
dard data and gatekeeperIdenti�er �elds are set only when the neighbor is de�ned as GnuGk.

• Ability to set shared secrets for each radius server separatelly.

• New, much faster, Radius client implementation.

• Called-Party-Number-IE rewrite occured too late, causing auth/acct modules to receive the original
number instead of the rewritten one.

• Fixed proxying of RTP packets, so RTP sockets are not closed on temporary errors (like remote socket
not yet ready). This bug a�ected especially NAT traversal and situation, when audio was sent very
early, when reverse proxy path has not been yet established.

• Fixed handling of RRJ from an alternate GnuGk.

• New direct SQL accounting module (8.4 ([SQLAcct])).

• Handling multiple reply messages (RIP/LCF/LRJ) from neighbors �xed.

• Support for CallCreditServiceControl in RCF and ACF messages, which allows reporting call duration
limit and user's account balance to endpoints. Currently RadAuth and RadAliasAuth modules support
this feature.

• Log �le rotation, new LogFile con�g section, new setlog and rotatelog status interface commands.

• Do not include an invalid access token (with null object identi�er) in LCF to prevent interoperability
problems.

• Better handling of multiple calls over a single signalling channel by setting multipleCalls and main-
tainConnection H.225.0 �elds to FALSE in all messages passing through the gatekeeper.

• Better User-Name, Calling-Station-Id and Called-Station-Id handling.

• IncludeEndpointIP �ag for RadAuth, RadAliasAuth and RadAcct is obsolete, these modules will always
send Framed-IP-Address.

1. Introduction 8

• New Gatekeeper::Auth �ag SetupUnreg to toggle Q.931 Setup authentication for unregistered endpoints
only.

• New RADIUS h323-ivr-out=h323-call-id parameter that contains an H.323 Call Identi�er.

• The SQL billing from the contrib section can now authenticate users only by their IP (ignoring User-
Name) and has a new, more �exible tari�/rating engine.

• RadAliasAuth can authenticate now Setup messages without sourceAddress �eld present (it will use
Calling-Party-Number instead).

• Better signal handling to prevent accidental gatekeeper crashes (due to SIGPIPE, for example).

• CDR rotation per number of lines works correctly.

Of course, the major functions in version 2.0 are also included:

• The registration table and call record table are redesigned, thread-safe, and very e�cient. Support ten
thousands of registrations and thousands of concurrent calls.

• A new routed mode architecture that support H.225.0/Q.931 routed and H.245 routed without forking
additional threads. Thus the thread number limit will not restrict the number of concurrent calls.

• Support H.323 proxy by routing all logical channels, including RTP/RTCP media channels and T.120
data channels. Logical channels opened by H.245 tunnelling and fast-connect procedure are also sup-
ported. In proxy mode, there is no tra�c between the calling and called parties directly. Thus it is
very useful if you have some endpoints using private IP behind an NAT box and some endpoints using
public IP outside the box.

• Support gatekeepers cluster by exchanging LRQ/LCF/LRJ (neighboring function). If the destination
of a received LRQ is unknown, the GnuGk can forward it to next hop. Therefore the GnuGk can work
as a directory gatekeeper.

• Support various authentication methods for selectable RAS requests, including H.235 password (MD5,
SHA-1 and CAT), IP pattern and pre�xes matching.

• Support alternate gatekeepers for redundancy and load balancing. If the GnuGk is overloaded, the
endpoints can be redirected to other gatekeepers.

• Can work as an endpoint (gateway or terminal) by resigtering with a parent gatekeeper. With this
feature, building gatekeeper hierarchies is easily.

• Monitor and control the GnuGk via TCP status port, including registration and call statistics.

• Output CDR(call detail record) to status port for backend billing system. The CDR contains call
identi�er, calling and called IP, start and end time and call duration.

• Most con�gurations are changeable at runtime. The GnuGk rereads the con�gurations on receiving
reload command via status port, or on receiving HUP signal (Unix platform).

1.5 Download

The newest stable and a development version are available at the download page <http://www.gnugk.org/
h323download.html>.

2. Compiling and Installing 9

The very latest source code is in the CVS at Sourceforge <http://sourceforge.net/cvs/?group_id=4797>
(Web-GUI <http://cvs.sourceforge.net/cgi-bin/viewcvs.cgi/openh323gk/>). Beware - that's the
bleeding edge.

You can also download some executables from the download page <http://www.gnugk.org/h323download.
html>.

1.6 Mailing Lists

There are two mailing list for the project, one for the developers and one for the users.

General user questions should be send to the users mailing list <mailto:Openh323gk-users@sourceforge.
net>. You can �nd the list archive here <http://sourceforge.net/mailarchive/forum.php?forum_
id=8549>. To join this mailing list, click here <http://lists.sourceforge.net/lists/listinfo/
openh323gk-users>.

To report problems or submit bugs/patches, send mails to the developers mailing list <mailto:
Openh323gk-developer@sourceforge.net>. The list archive is here <http://sourceforge.net/
mailarchive/forum.php?forum_id=3079>. Please send user questions to the users mailinglist and keep
this list to development! If you want to contribute to the project, please join the mailing list <http:
//lists.sourceforge.net/lists/listinfo/openh323gk-developer>.

Note: Please don't send your questions as private emails to individual developer. We are usually busy.
We would not like to be your private consultant, unless you'd like to pay us. Send your problems to the
appropriate public mailing list so everybody can help you.

Also please don't send the GnuGk speci�c problems to the OpenH323 mailing list, or vice versa. They are
di�erent projects, though closely related.

Before you sending an email, make sure you have read the related documents carefully. Describe your
problems clearly and precisely. Show us the error messages or logs if there is any.

1.7 Contributors

The current project coordinator is Jan Willamowius <http://www.willamowius.de/>
<jan@willamowius.de>

The main features and functions of version 2.0 are contributed by Chih-Wei Huang <http://www.cwhuang.
idv.tw/> <cwhuang@linux.org.tw> and Citron Network Inc. <http://www.citron.com.tw/>, including
thread-safe registration and call tables, new routed mode architecture, H.323 proxy, H.235 authentication
and MySQL backend.

Michal Zygmuntowicz <m.zygmuntowicz@onet.pl> has done some great work on Radius support and other
improvements.

The initial version of the gatekeeper has been developed by Xiang Ping Chen, Joe Metzger and Rajat Todi.

2 Compiling and Installing

2.1 Compiling the Gatekeeper

To build the gatekeeper you need at least PWLib 1.5.0 and OpenH323 1.12.0 or later. The development
version of the gatekeeper usually needs the most recent OpenH323 version available. These libraries are avail-

2. Compiling and Installing 10

able at OpenH323 Download Page <http://sourceforge.net/projects/openh323>. See the instructions
on how to compile the OpenH323 code <http://www.openh323.org/build.html>.

Order of compiling:

1. PWLib (release + debug version)

2. OpenH323

3. OpenH323 test application (not needed, just to make sure everything works so far)

4. The Gatekeeper

On Unix do a configure and make debug or make opt in the gatekeeper directory to build debug or
release version, respectively. Use make both to build both versions. Note you have to use GCC 3.3.x or
later. The older version may not work. Good practice is to do a make debugdepend or make optdepend in
the gatekeeper directory before starting actual compilation (make debug or make opt) - these commands
build approtiate dependency lists, so after you will update your sources from CVS, all a�ected �les will get
recompiled. Otherwise you can �nish with the Gatekeeper partially compiled with the older headers and
partially with the updated headers - a very bad thing.

On Windows just open and compile the provided solution (gk.sln) for Microsoft Visual Studio .NET
2003 or the workspace (gk.dsw) for Microsoft Visual Studio 6.0 SP6. Of course, you need to have PWLib
and OpenH323 already compiled and approtiate include/library paths set up. If you want to get MySQL
or PostgreSQL support, install/compile approtiate client libraries and add HAS_MYSQL=1 and/or
HAS_PGSQL=1 to preprocessor macros of the gatekeeper project. You also need to tell the compiler where
to �nd include �les/libraries and instruct the linker to link with these client libraries.

Type configure �help to see a detailed list of all compile time options. You can use them to enable or
disable some features of the gatekeeper. For example, if you do not need RADIUS just type: configure
�disable-radius.

The recommended PWLib/OpenH323 versions are these from the Pandora release (1.7.5.2/1.14.4.2) or newer.
Older versions are not supported anymore and are not guaranteed to work with the gatekeeper.

To build the gatekeeper that is statically linked with system and OpenH323 libraries, make optnoshared or
make debugnoshared has to be used.

In order to use the gatekeeper under heavy load, enabling LARGE_FDSET feature (ONLY FOR UNIX
VERSION) is recommended (con�gure �with-large-fdset=4096). Some systems also need to use ulimit in
order to allow more than 1024 sockets to be allocated for a single process. Note that the PWLib library
starting from version 1.5.3 supports a similar feature too, so you can choose between LARGE_FDSET
GnuGk and PWLib implementation. GnuGk native implementation gives better performance results. Max-
imum LARGE_FDSET value should be calculated based upon predicted maximum sockets usage. A rule
of thumb may be:

MAX_NUMBER_OF_CONCURRENT_CALLS * 10 * 120%

Where:
10 = 2 sockets for Q.931 + 2 sockets for H.245 + 6 sockets for RTP and other stuff

So for 100 concurrent calls you don't need more than ca. 1024 sockets in the LARGE_FDSET.

2. Compiling and Installing 11

2.2 The addpasswd Utility

Status line access authentication and SimplePasswordAuth module require encrypted passwords to be stored
in the gatekeeper con�guration �le. Also since 2.2.2 version, the gatekeeper supports encryption of all
passwords in the con�g. addpasswd utility is required to generate and store these encrypted passwords. This
utility is included with the gatekeeper and can be compiled using:

$ make addpasswd

The usage is as follows:

$ addpasswd CONFIG SECTION KEYNAME PASSWORD

Example 1: 'gkadmin' user with 'secret' password has to be added to [GkStatus::Auth] con�g section to
enable status line interface authentication:

$ addpasswd gnugk.ini GkStatus::Auth gkadmin secret

Example 2: 'joe' user with 'secret' password has to be added to [Password] con�g section to enable endpoint
authentication:

$ addpasswd gnugk.ini Password joe secret

Example 3: An encrypted shared secret is added to a RadAuth con�g section:

$ addpasswd gnugk.ini RadAuth SharedSecret VerySecretPassword

IMPORTANT: KeyFilled variable de�nes a default initializer for password encryption keys. It can be
ommited in the con�g (it is de�ned to 0 then), but if it is speci�ed, each time it changes, encrypted passwords
have to be regenerated (encrypted again using the addpasswd utility).

2.3 Installing the Gatekeeper

There is no special installation procedure needed. Just copy the executable to the directory you like and
create a con�g �le for it. There are several con�g examples in the etc/ subdirectory of source tree. See
section 4.2 (Con�guration File) for detailed explanations.

For example, in Linux x86 platform, the optimized executable gnugk is produced in obj_linux_x86_r/
subdirectory. You may copy it to /usr/sbin/, create a con�g in /etc/gnugk.ini and start it by

$ /usr/sbin/gnugk -c /etc/gnugk.ini -o /var/log/gnugk.log -ttt

See section 4.1 (Command Line Options) for details.

2.4 Pre-Built Binaries

If you do not wish to compile the gatekeeper from source, there are several pre-built `packages' available
from SourceForge <http://sourceforge.net/project/showfiles.php?group_id=4797>. Not all versions
will be made available as binaries - check what is avilable.

Tar packages (.tgz or .tar.gz)
Download the tar �le and enter the following command as root, substitute in the name of the �le you
downloaded.

3. Getting Started (Tutorial) 12

$ tar xvzf gnugk-x.x.x.tar

Debian packages (.deb)
Debian includes the gatekeeper as openh323gk package. You can install it by using the following command
as root:

$ apt-get install openh323gk

3 Getting Started (Tutorial)

3.1 A �rst simple experiment

To see that all components are up and running, get 2 Linux workstations, both connected to the LAN.
Make sure you have at least version 1.1 of OpenH323 and OhPhone installed. On the �rst machine run the
gatekeeper and ohphone (on di�erent consoles):

jan@machine1 > gnugk -ttt

Now the gatekeeper is running in direct mode. The "-ttt" option tells the gatekeeper to do a lot of debug
output on the console (you can direct that output to a �le with "-o logfile").

jan@machine1 > ohphone -l -a -u jan

Now this OhPhone is listening (-l) for calls and will automatically accept them (-a). It has registered as
user jan with the gatekeeper that it will automatically detect. (If the auto detect fails for some reason use
"-g 1.2.3.4" to specify the IP number the gatekeeper is running on.)

On the second machine run ohphone only:

peter@machine2 > ohphone -u peter jan

The second instance of OhPhone registers with the auto detected gatekeeper as user peter and tries to call
user jan. The gatekeeper will resolve the username to the IP number from where user jan has registered
(machine1 in this case) and OhPhone will call the other instance of OhPhone on machine one.

The �rst instance of OhPhone will accept that call and Peter and Jan can chat.

3.2 Using the Status interface to monitor the gatekeeper

Now we try to see which messages are handled by the gatekeeper. On a new console on machine1 we use
telnet to connect to the gatekeeper:

jan@machine1 > telnet machine1 7000

Most probably we'll get an "Access forbidden!" message, because not everybody is allowed to spy.

Now we create a �le called gatekeeper.ini and put it in the directory where we start the gatekeeper.
gatekeeper.ini only contains 4 lines:

3. Getting Started (Tutorial) 13

[Gatekeeper::Main]
Fourtytwo=42
[GkStatus::Auth]
rule=allow

Stop the gatekeeper with Ctrl-C and restart it. When we do the telnet again, we stay connected with the
gatekeeper. Now repeat the �rst experiment where Peter calls Jan and see which messages are handled by
the gatekeeper in non-routed mode. There is a number of commands that can be issued in this telnet session:
Type "help" to see them. To end the telnet session with the gatekeeper type "quit" and hit Enter.

But this is very insecure - everyboy could connect to the status interface and see this. Lets change the the
con�guration �le to

[Gatekeeper::Main]
Fourtytwo=42
[GkStatus::Auth]
rule=password
gkadmin=QC7VyAo5jEw=

The 5th line is added by addpasswd utility, it creates a user "gkadmin" with password "secret" which will
limit access to the status port. Restart the gatekeeper with this new con�guration and do the telnet again.
Now you will be asked for a username and password before you can login.

Take a look at the 4.2.2 (GkStatus::Auth) section for more details on securing the status ports.

3.3 Starting the gatekeeper in routed mode

Starting the gatekeeper in routed mode means that the gatekeeper uses "gatekeeper routed signalling" for
all calls. In this mode the gatekeeper all signalling messages go through the gatekeeper and it has much
greater control over the calls.

jan@machine1 > gnugk -r

Now the gatekeeper is running in routed mode. Telnet to the status port and make a call to see what
messages are now handled by the gatekeeper.

Note that all media packets (audio and video) are still sent directly between the endpoints (the 2 instances
of ohphone).

Since gatekeeper routed signalling is much more complicated you are much more likely to hit a bug n the
gatekeeper in this mode. But if it breaks, you get to keep the pieces. ;-)

3.4 A virtual PBX: Disconnecting calls

Until now the gatekeeper has only acted as a mechanism to resolve symbolic names to IP addresses. Thats
an important function but hardly exciting.

Since the gatekeeper has a lot of control over the calls, it can terminate them for example. When we are
connected to the status port, we can list all active calls with "PrintCurrentCalls". To terminate a call, we
can say "Disconnectip 1.2.3.4" for one of its endpoints.

One could for example write a simple script that connects to the status port and listens for all ongoing calls
and terminates them after 5 minutes, so no user can over use system resources.

Take a look at the other telephony functions like TransferCall to see what else is available.

3. Getting Started (Tutorial) 14

3.5 Routing calls over a gateway to reach external users

Without using a gateway you can only call other people with an IP phone over the Internet. To reach people
with ordinary telephones you must use a gateway.

_________________ ______________
endpoint "jan"		
192.168.88.35	--------->	Gatekeeper

gateway "gw1"	outgoing	
192.168.88.37	<---------	____________

The gatekeeper has to know which calls are supposed to be routed over the gateway and what numbers shall
be called directly. Use the [RasSrv::GWPre�xes] section of the con�g �le to tell the gatekeeper the pre�x of
numbers that shall be routed over the gateway.

[RasSrv::GWPrefixes]
gw1=0

This entry tells the gatekeeper to route all calls to E.164 numbers starting with 0 to the gateway that has
registered with the H.323 alias "gw1". If there is no registered gateway with that alias the call will fail.
(Note that you must use the gateway alias - you can't just tell the gatekeeper the IP number of the gateway.)

A pre�x can contain digits 0-9, # and *. It can also contain a special character . (a dot) that matches
any digit and can be pre�xed with ! (an exclamation mark) to disable the pre�x. Pre�x matching is done
accordingly to the longest matching pre�x rule, with ! rules having higher priority if lengths are equal. Some
examples:

[RasSrv::GWPrefixes]
; This entry will route numbers starting with 0048 (but not with 004850 and 004860)
; to the gw1
gw1=0048,!004850,!004860
; This entry will match only 001 with 10 digits following
gw2=001..........

3.6 Rewriting E.164 numbers

When using a gateway you often have to use di�erent numbers internally and rewrite them before sending
them over a gateway into the telephone network. You can use the 5.2 (RasSrv::RewriteE164) section to
con�gure that.

Example: You want to call number 12345 with you IP Phone and would like to reach number 08765 behind
a gateway called "gw1".

[RasSrv::GWPrefixes]
gw1=0

[RasSrv::RewriteE164]
12345=08765

4. Basic Gatekeeper Con�guration 15

You can also con�gure rewriting of E.164 numbers based on which gateway you are receiving a call from or
sending a call to using the 5.3 (RasSrv::GWRewriteE164) section.

Example: You have two di�erent gateways ("gw1" and "gw2") which you are sending calls with pre�x 0044
to, but which require a di�erent pre�x to be added to the number after the routing has selected the gateway.
This might be for identi�cation purposes for example.

[RasSrv::GWPrefixes]
gw1=0044
gw2=0044

[RasSrv::GWRewriteE164]
gw1=out=0044=77770044
gw2=out=0044=88880044

Example: You want to identify calls from a particular gateway "gw1" with a speci�c pre�x before passing
these calls to another gateway "gw2".

[RasSrv::GWPrefixes]
gw2=1

[RasSrv::GWRewriteE164]
gw1=in=00=123400

Rewrite expressions accept dot '.' and percent sign '%' wildcard characters to allow building more general
rules. The dot character can occur at both left and right hand sides of expressions, the percent sign can
occur only at the left side only. Use '.' to match any character and copy it to the rewritten string and '%'
to match any character and skip it. A few simple examples:

[RasSrv::RewriteE164]
; Rewrite 0044 + min. 7 digits to 44 + min. 7 digits
0044.......=44.......
; Rewrite numbers starting with 11 + 4 digits + 11 to 22 + 4 digits + 22
; (like 11333311 => 22333322, 110000112345 => 220000222345)
11....11=22....22
; strip the first four digits from all numbers (11114858345 => 4858345)
; this is equivalent of 10 rules %%%%1=1, %%%%2=2, ...
%%%%.=.
; insert two zeros in the middle of the number (111148581234 => 11110048581234)
....48=....0048
; even this is possible (415161 => 041051061)
4.5.6=04.05.06

4 Basic Gatekeeper Con�guration

The behavior of the gatekeeper is completely determined by the command line options and con�guration
�le. Some command line options may override the setting of the con�guration �le. For example, the option
-l overrides the setting TimeToLive in the con�guration �le.

4.1 Command Line Options

Almost every option has a short and a long format, e.g., -c is the same as �config.

4. Basic Gatekeeper Con�guration 16

4.1.1 Basic

-h �help

Show all available options and quit the program.

-c �config filename

Specify the con�guration �le to use.

-s �section section

Specify which main section to use in the con�guration �le. The default is [Gatekeeper::Main].

-i �interface IP

Specify the interface (IP number) that the gatekeeper listens to. You should leave out this option to
let the gatekeeper automatically determine the IP it listens to, unless you want the gatekeeper only
binds to a speci�ed IP.

-l �timetolive n

Specify the time-to-live timer (in seconds) for endpoint registration. It overrides the setting TimeToLive
in the con�guration �le. See 4.2.1 (there) for detailed explanations.

-b �bandwidth n

Specify the total bandwidth available for the gatekeeper. Without specifying this option, the bandwidth
management is disable by default.

�pid filename

Specify the pid �le, only valid for Unix version.

-u �user name

Run the gatekeeper process as this user. Only valid for Unix versions.

�core n

(Unix only) Enable writting core dump �les when the application crashes. A core dump �le will not
exceed n bytes in size. A special constant "unlimited" may be used to not enforce any particular limit.

4.1.2 Gatekeeper Mode

The options in this subsection override the settings in the 4.2.4 ([RoutedMode] section) of the con�guration
�le.

-d �direct

Use direct endpoint call signalling.

-r �routed

Use gatekeeper routed call signalling.

-rr �h245routed

Use gatekeeper routed call signalling and H.245 control channel.

4. Basic Gatekeeper Con�guration 17

4.1.3 Debug Information

-o �output filename

Write trace log to the speci�ed �le.

-t �trace

Set trace verbosity. The more -t you add, the more verbose to output. For example, use -ttttt to
set the trace level to 5.

4.2 Con�guration File

The con�guration �le is a standard text �le. The basic format is:

[Section String]
Key Name=Value String

Comments are marked with a hash (#) or a semicolon (;) at the beginning of a line.

The �le complete.ini contains all available sections for the GnuGk. In most cases it doesn't make sense to
use them all at once. The �le is just meant as a collection of examples for many settings.

The con�guration �le can be changed at runtime. Once you modify the con�guration �le, you may issue
reload command via status port, or send a signal HUP to the gatekeeper process on Unix. For example,

kill -HUP `cat /var/run/gnugk.pid`

4.2.1 Section [Gatekeeper::Main]

• Fourtytwo=42
Default: N/A This setting is used to test the presence of the con�g �le. If it is not found, a warning is
issued. Make sure it's in all your con�g �les.

• Name=OpenH323GK
Default: OpenH323GK Gatekeeper identi�er of this gatekeeper. The gatekeeper will only respond to
GRQs for this ID and will use it in a number of messages to its endpoints.

• Home=192.168.1.1
Default: 0.0.0.0 The gatekeeper will listen for requests on this IP number. By default, the gatekeeper
listens on all interfaces of your host. You should leave out this option, unless you want the gatekeeper
only to bind to a speci�ed IP. Multiple Home addresses can be used and have to be separated with a
semicolon (;) or comma (,).

• NetworkInterfaces=192.168.1.1/24,10.0.0.1/0
Default: N/A Specify the network interfaces of the gatekeeper. By default the gatekeeper will detect
the interfaces of your host automatically. There are two situations that you may want to use this
option. One is automatical detection failed, another is the gatekeeper is behind an NAT box and allow
endpoints with public IPs to register with. In this case you should set the option just as the gatekeeper
is running on the NAT box.

• EndpointIDSuffix=_gk1
Default: _endp The gatekeeper will assign a unique identi�er to each registered endpoint. This option
can be used to specify a su�x to append to the endpoint identi�er. This is only usefull when using
more than one gatekeeper.

4. Basic Gatekeeper Con�guration 18

• TimeToLive=300
Default: -1 An endpoint's registration with a gatekeeper may have a limited life span. The gatekeeper
speci�es the registration duration of an endpoint by including a timeToLive �eld in the RCF message.
After the speci�ed time, the registration has expired. The endpoint shall periodically send an RRQ
having the keepAlive bit set prior to the expiration time. Such a message may include a minimum
amount of information as described in H.225.0. This is called a lightweight RRQ.
This con�guration setting speci�es the time-to-live timer in seconds until the registration expires. Note
the endpoint may request a shorter timeToLive in the RRQ message to the gatekeeper. To avoid an
overload of RRQ messages, the gatekeeper automatically adjusts this timer to 60 seconds if you give a
lesser value!
After the expiration time, the gatekeeper will subsequently send two IRQ messages to query if the end-
point is still alive. If the endpoint responds with an IRR, the registration will be extended. Otherwise
the gatekeeper will send a URQ with reason ttlExpired to the endpoint. The endpoint must then
re-register with the gatekeeper using a full RRQ message.
To disable this feature, set it to -1.

• TotalBandwidth=100000
Default: -1 Total bandwidth available to be given to endpoints. By default this feature is o�. Be
carefull when using it, because many endpoints have buggy implementations.

• RedirectGK=Endpoints > 100 || Calls > 50
Default: N/A This option allow you to redirect endpoints to alternate gatekeepers when the gatekeeper
overloaded. For example, with the above setting the gatekeeper will reject an RRQ if registered
endpoints exceed 100, or reject an ARQ if concurrent calls exceed 50.
Furthermore, you may explicitly redirect all endpoints by setting this option to temporary or
permanent. The gatekeeper will return an RAS rejection message with a list of alternate gatekeepers
de�ned in AlternateGKs. Note that a permanent redirection means that the redirected endpoints will
not register with this gatekeeper again. Please also note the function only takes e�ect to H.323 version
4 compliant endpoints.

• AlternateGKs=1.2.3.4:1719:false:120:OpenH323GK
Default: N/A We allow for existence of another gatekeeper to provide redundancy. This is implemented
in a active-active manner. Actually, you might get into a (valid !) situation where some endpoints
are registered with the �rst and some are registered with the second gatekeeper. You should even be
able use the two gatekeepers in a round_robin fashion for load-sharing (that's untested, though :-)). If
you read on, "primary GK" refers to the gatekeeper you're currently con�guring and "alternate GK"
means the other one. The primary GK includes a �eld in the RCF to tell endpoints which alternate
IP and gatekeeper identi�er to use. But the alternate GK needs to know about every registration with
the primary GK or else it would reject calls. Therefore our gatekeeper can forward every RRQ to an
alternate IP address.
The AlternateGKs con�g option speci�es the �elds contained in the primary GK's RCF. The �rst and
second �elds of this string de�ne where (IP, port) to forward to. The third tells endpoints whether they
need to register with the alternate GK before placing calls. They usually don't because we forward
their RRQs, so they get registered with the alternate GK, too. The fourth �eld speci�ed the priority
for this GK. Lower is better, usually the primary GK is considered to have priority 1. The last �eld
speci�es the alternate gatekeeper's identi�er.

• SendTo=1.2.3.4:1719
Default: N/A Although this information is contained in AlternateGKs, you must still specify which
address to forward RRQs to. This might di�er from AlternateGK's address, so it's a separate con�g
option (think of multihomed machines).

4. Basic Gatekeeper Con�guration 19

• SkipForwards=1.2.3.4,5.6.7.8
Default: N/A To avoid circular forwarding, you shouldn't forward RRQs you get from the other GK
(this statement is true for both, primary and alternate GK). Two mechanisms are used to identify
whether a request should be forwarded. The �rst one looks for a �ag in RRQ. Since few endpoints
implement this, we need a second, more reliable way. Specify the other gatekeeper's IP in this list.

• StatusPort=7000
Default: 7000 Status port to monitor the gatekeeper. See 12 (this section) for details.

• SignalCallId=1
Default: 0 Signal call IDs in ACF/ARJ/DCF/DRJ/RouteRequest messages on the status port. See
12 (this section) for details.

• StatusTraceLevel=2
Default: 2 Default output trace level for new status interface clients. See 12 (this section) for details.

• TimestampFormat=ISO8601
Default: Cisco Control default format of timestamp strings generated by the gatekeeper. This
option a�ects 8.4 ([SqlAcct]), 8.3 ([RadAcct]), 8.2 ([FileAcct]) and other modules, except 11.1
([CallTable]). You can further customize timestamp formatting per-module by con�guring per-module
TimestampFormat setting.
There are four prede�ned formats:

� RFC822 - a default format used by the gatekeeper (example: Wed, 10 Nov 2004 16:02:01 +0100)
� ISO8601 - standard ISO format (example: 2004-11-10 T 16:02:01 +0100)
� Cisco - format used by Cisco equipment (example: 16:02:01.534 CET Wed Nov 10 2004)
� MySQL - simple format that MySQL can understand (example: 2004-11-10 16:02:01)

If you need another format, you can build your own format string, using rules known from strftime
C function (see man strftime or search MSDN for strftime). In general, the format string consists of
regular character and format codes, preceeded by a percent sign. Example: "%Y-%m-%d and percent
%%" will result in "2004-11-10 and percent %". Some common format codes:

� %a - abbreviated weekday name
� %A - full weekday name
� %b - abbreviated month name
� %B - full month name
� %d - day of month as decimal number
� %H - hour in 24-hour format
� %I - hour in 12-hour format
� %m - month as decimal number
� %M - minute as decimal number
� %S - second as decimal number
� %y - year without century
� %Y - year with century
� %u - microseconds as decimal number (this is a GnuGk extension)
� %z - time zone abbreviation (+0100)
� %Z - time zone name

4. Basic Gatekeeper Con�guration 20

� %% - percent sign

• EncryptAllPasswords=1
Default: 0 Enable encryption of all passwords in the con�g (SQL passwords, RADIUS passwords,
[Password] passwords, [GkStatus::Auth] passwords). If enabled, all passwords have to be encrypted
using addpasswd utility. Otherwise only [Password] and [GkStatus::Auth] passwords are encrypted
(old behaviour).

• KeyFilled=0
Default: N/A De�ne a global padding byte to be used during password encryption/decryption. It can
be overriden by setting KeyFilled inside a particular con�g section. Usually, you do not need to
change this option.

Most users will never need to change any of the following values. They are mainly used for testing or very
sophisticated applications.

• UseBroadcastListener=0
Default: 1 De�nes whether to listen to broadcast RAS requests. This requires binding to all interfaces
on a machine so if you want to run multiple instances of gatekeepers on the same machine you should
turn this o�.

• UnicastRasPort=1719
Default: 1719 The RAS channel TSAP identi�er for unicast.

• MulticastPort=1718
Default: 1718 The RAS channel TSAP identi�er for multicast.

• MulticastGroup=224.0.1.41
Default: 224.0.1.41 The multicast group for the RAS channel.

• EndpointSignalPort=1720
Default: 1720 Default port for call signalling channel of endpoints.

• ListenQueueLength=1024
Default: 1024 Queue length for incoming TCP connection.

• SignalReadTimeout=1000
Default: 1000 Time in miliseconds for read timeout on call signalling channels (Q931).

• StatusReadTimeout=3000
Default: 3000 Time in miliseconds for read timeout on status channel.

• StatusWriteTimeout=5000
Default: 5000 Time in miliseconds for write timeout on status channel.

4.2.2 Section [GkStatus::Auth]

De�ne a number of rules who is allowed to connect to the status port. Whoever has access to the status
port has full control over your gatekeeper. Make sure this is set correctly.

• rule=allow
Default: forbid Possible values are

� forbid - disallow any connection.
� allow - allow any connection

4. Basic Gatekeeper Con�guration 21

� explicit - reads the parameter ip=value where ip is the IP address of the peering client, value
is 1,0 or allow,forbid or yes,no. If ip is not listed the parameter default is used.

� regex - the IP of the client is matched against the given regular expression.
Example:

To allow client from 195.71.129.0/24 and 195.71.131.0/24:
regex=�195\.71\.(129|131)\.[0-9]+$

� password - the user has to input appropriate username and password to login. The format of
username/password is the same as 7.3 ([SimplePasswordAuth]) section.

Moreover, these rules can be combined by "|" or "&". For example,

� rule=explicit | regex
The IP of client must match explicit or regex rule.

� rule=regex & password
The IP of client must match regex rule, and the user has to login by username and password.

• default=allow
Default: forbid Only used when rule=explicit.

• Shutdown=forbid
Default: allow Whether to allow shutdown the gatekeeper via status port.

• DelayReject=5
Default: 0 How long (in seconds) to wait before rejecting invalid username/password for the status
line access.

4.2.3 Section [LogFile]

This section de�nes log �le related parameters. Currently it allows users to specify log �le rotation options.

• Rotate=Hourly | Daily | Weekly | Monthly
Default: N/A If set, the log �le will be rotated based on this setting. Hourly rotation enables rota-
tion once per hour, daily - once per day, weekly - once per week and monthly - once per month. An
exact rotation moment is determined by a combination of RotateDay and RotateTime variables. Dur-
ing rotation, an existing �le is renamed to CURRENT_FILENAME.YYYYMMDD-HHMMSS, where
YYYYMMDD-HHMMSS is replaced with the current timestamp, and new lines are logged to an empty
�le. To disable the rotation, do not set Rotate parameter or set it to 0.

Example 1 - rotate every hour (00:45, 01:45, ..., 23:45):
[LogFile]
Rotate=Hourly
RotateTime=45

Example 2 - rotate every day at 23:00 (11PM):
[LogFile]
Rotate=Daily
RotateTime=23:00

4. Basic Gatekeeper Con�guration 22

Example 3 - rotate every Sunday at 00:59:
[LogFile]
Rotate=Weekly
RotateDay=Sun
RotateTime=00:59

Example 4 - rotate on the last day of each month:
[LogFile]
Rotate=Monthly
RotateDay=31
RotateTime=23:00

4.2.4 Section [RoutedMode]

Call signalling messages may be passwd in two ways. The �rst method is Direct Endpoint Call Signalling,
in which case the call signalling messages are passed directly between the endpoints. The second method
is Gatekeeper Routed Call Signalling. In this method, the call signalling messages are routed through the
gatekeeper between the endpoints. The choice of which methods is used is made by the gatekeeper.

When Gatekeeper Routed call signalling is used, the gatekeeper may choose whether to route the H.245
control channel and logical channels.

Case I.
The gatekeeper doesn't route them. The H.245 control channel and logical channels are established
directly between the endpoints.

Case II.
The H.245 control channel is routed between the endpoints through the gatekeeper, while the logical
channels are established directly between the endpoints.

Case III.
The gatekeeper routes the H.245 control channel, as well as all logical channels, including RTP/RTCP
for audio and video, and T.120 channel for data. In this case, no tra�c is passed directly between the
endpoints. This is usually called an H.323 Proxy, which can be regarded as an H.323-H.323 gateway.

This section de�nes the gatekeeper routed mode options (case I & II). The proxy feature is de�ned in the
4.2.5 (next section). All settings in this section are a�ected by reloading.

• GKRouted=1
Default: 0 Whether to enable the gatekeeper routed signaling mode.

• H245Routed=1
Default: 0 Whether to route the H.245 control channel through the gatekeeper too. Only takes e�ect
if GKRouted=1 and H.245 tunneling is disabled for a call. Even when this option is disabled, if Proxy
or ProxyForNAT takes e�ect, an H.245 channel is always routed through the gatekeeper for calls being
proxied.

• CallSignalPort=0
Default: 1721 The port of call signalling for the gatekeeper. The default port is 1721. We don't use
the well-known port 1720 so you can run an H.323 endpoint in the same machine of the gatekeeper.
You may set it to 0 to let the gatekeeper choose an arbitrary port.

4. Basic Gatekeeper Con�guration 23

• CallSignalHandlerNumber=2
Default: 1 The number of threads dedicated to handle signaling/H.245 channels. You may increase
this number in a heavy loaded gatekeeper. Each thread can process one signaling message at time, so
increasing this number will increase call throughput. Under Windows, there exists a default limit of
64 sockets used by a single signaling thread, so each signaling thread is able to handle at most 32 calls
(with H.245 tunneling enabled).

• RtpHandlerNumber=2
Default: 1 The number of RTP proxy handling threads. Increase this value only if you experience
problems with RTP delay or jitter on a heavily loaded gatekeeper. A special care has to be taken on
Windows, at RTP handling threads are subject of the same limit of 64 sockets as signalling threads.
Each RTP thread is able to handle at most 32 proxied calls (2 sockets per call).

• AcceptNeighborsCalls=1
Default: 1 With this feature enabled, the call signalling thread will accept calls without a pre-existing
CallRec found in the CallTable, provided an endpoint corresponding to the destinationAddress in
Setup can be found in the RegistrationTable, and the calling party is its neighbors or parent GK. The
gatekeeper will also use it's own call signalling address in LCF in responding to an LRQ. That means,
the call signalling will be routed to GK2 in GK-GK calls. As a result, the CDRs in GK2 can correctly
show the connected time, instead of 'unconnected'.

• AcceptUnregisteredCalls=1
Default: 0 With this feature enabled, the gatekeeper will accept calls from any unregistered endpoint.
However, it raises security risks. Be careful to use it.

• RemoveH245AddressOnTunneling=1
Default: 0 Some endpoints send h245Address in the UUIE of Q.931 even when h245Tunneling is set to
TRUE. This may cause interoperability problems. If the option is TRUE, the gatekeeper will remove
h245Address when h245Tunneling �ag is TRUE. This enforces the remote party to stay in tunnelling
mode.

• RemoveCallOnDRQ=0
Default: 1 With this option turning o�, the gatekeeper will not disconnect a call if it receives a DRQ
for it. This avoids potential race conditions when a DRQ overtakes a Release Complete. This is only
meaningful in routed mode because in direct mode, the only mechanism to signal end-of-call is a DRQ.

• DropCallsByReleaseComplete=1
Default: 0 According to Recommendation H.323, the gatekeeper could tear down a call by sending
RAS DisengageRequest to endpoints. However, some bad endpoints just ignore this command. With
this option turning on, the gatekeeper will send Q.931 Release Complete instead of RAS DRQ to both
endpoints to force them drop the call.

• SendReleaseCompleteOnDRQ=1
Default: 0 On hangup, the endpoint sends both Release Complete within H.225/Q.931 and DRQ within
RAS. It may happen that DRQ is processed �rst, causing the gatekeeper to close the call signalling
channel, thus preventing the Release Complete from being forwarding to the other endpoint. Though
the gatekeeper closes the TCP channel to the destination, some endpoints (e.g. Cisco CallManager)
don't drop the call even if the call signalling channel is closed. This results in phones that keep ringing
if the caller hangs up before the callee pickups. Setting this parameter to 1 makes the gatekeeper
always send Release Complete to both endpoints before closing the call when it receives DRQ from
one of the parties.

• SupportNATedEndpoints=1
Default: 0 Whether to allow an endpoint behind an NAT box register to the gatekeeper. If yes, the
gatekeeper will translate the IP address in Q.931 and H.245 channel into the IP of NAT box.

4. Basic Gatekeeper Con�guration 24

Since 2.0.2, the GnuGk supports NAT outbound calls (from an endpoint behind NAT to public net-
works) directly without any necessary modi�cation of endpoints or NAT box. Just register the endpoint
with the GnuGk and you can make call now.

• ScreenDisplayIE=MyID
Default: N/A Modify the DisplayIE of Q.931 to the speci�ed value.

• ScreenCallingPartyNumberIE=0965123456
Default: N/A Modify the CallingPartyNumberIE of Q.931 to the speci�ed value.

• ScreenSourceAddress=MyID
Default: N/A Modify the sourceAddress �eld of UUIE element from Q.931 Setup message.

• ForwardOnFacility=1
Default: 0 If yes, on receiving Q.931 Facility with reason callForwarded, the gatekeeper will forwards
call Setup directly to the forwarded endpoint, instead of passing the message back to the caller. If
you have broken endpoints that can't handle Q.931 Facility with reason callForwarded, turn on this
option. Note that this feature may not always work correctly, as it does not provide any means of
capability renegotiation and media channel reopening.

• ShowForwarderNumber=0
Default: 0 Whether to rewrite the calling party number to the number of forwarder. It's usually used
for billing purpose. Only valid if ForwardOnFacility=1.

• Q931PortRange=20000-20999
Default: N/A (let the OS allocate ports) Specify the range of TCP port number for Q.931 sig-
nalling channels. Note the range size may limit the number of concurrent calls. Make sure this range
is wide enough to take into account TIME_WAIT TCP socket timeout before a socket can be reused
after closed. TIME_WAIT may vary from 15 seconds to a few minutes, depending on an OS. So if
your range is 2000-2001 and you made two calls, next two can be made after TIME_WAIT time-
out elapses and the sockets can be reused. The same applies to H245PortRange and T120PortRange.
TIME_WAIT can be usualy tuned down on most OSes.

• H245PortRange=30000-30999
Default: N/A (let the OS allocate ports) Specify the range of TCP port number for H.245 con-
trol channels. Note the range size may limit the number of concurrent calls. See remarks about
TIME_WAIT socket state timeout in the Q931PortRange description.

• SetupTimeout=4000
Default: 8000 A timeout value (in milliseconds) to wait for a �rst message (Setup) to be received after
a signaling TCP channel has been opended.

• SignalTimeout=10000
Default: 15000 A timeout value (in milliseconds) to wait for a signalling channel to be opened after
an ACF message is sent or to wait for an Alerting message after a signalling channel has been opened.
This option can be thought as a maximum allowed PDD (Post Dial Delay) value.

• AlertingTimeout=60000
Default: 180000 A timeout value (in milliseconds) to wait for a Connect message after a call entered
Alerting state. This option can be thought as a maximum "ringing time".

• TcpKeepAlive=0
Default: 1 Enable/disable keepalive feature on TCP signaling sockets. This can help to detect inactive
signaling channels and prevent dead calls from hanging in the call table. For this option to work,
you also need to tweak system settings to adjust keep alive timeout. See docs/keepalive.txt for more
details.

4. Basic Gatekeeper Con�guration 25

• TranslateFacility=1
Default: 0 Enable this option if you have interoperability problems between H.323v4 and non-H.323v4
endpoints. It converts Facility messages with reason = transportedInformation into Facility messages
with an empty body, because some endpoints do not process tunneled H.245 messages inside Facility,
if the body is not empty. The conversion is performed only when neccessary - if both endpoints are v4
or both endpoints are pre-v4, nothing is changed.

• SocketCleanupTimeout=1000
Default: 5000 De�ne time to wait before an unused socket is closed (if it is not yet closed) and deleted
(its memory is released). If you use very small port ranges, like a few ports (e.g. RTPPortRange=2000-
2009), you may want to decrease this value to get sockets reusable faster.

4.2.5 Section [Proxy]

The section de�nes the H.323 proxy features. It means the gatekeeper will route all the tra�c between the
calling and called endpoints, so there is no tra�c between the two endpoints directly. Thus it is very useful
if you have some endpoints using private IP behind an NAT box and some endpoints using public IP outside
the box.

The gatekeeper can do proxy for logical channels of RTP/RTCP (audio and video) and T.120 (data). Logical
channels opened by fast-connect procedures or H.245 tunnelling are also supported.

Note to make proxy work, the gatekeeper must have direct connection to both networks of the caller and
callee.

• Enable=1
Default: 0 Whether to enable the proxy function. You have to enable gatekeeper routed mode �rst
(see the 4.2.4 (previous section)). You don't have to specify H.245 routed. It will automatically be
used if required.

• InternalNetwork=10.0.1.0/24
Default: N/A De�ne the networks behind the proxy. Multiple internal networks are allow. The proxy
route channels only of the communications between one endpoint in the internal network and one
external. If you don't specify it, all calls will be proxied.

Format:
InternalNetwork=network address/netmask[,network address/netmask,...]
The netmask can be expressed in decimal dot notation or CIDR notation (pre�x length), as shown
in the example.

Example:
InternalNetwork=10.0.0.0/255.0.0.0,192.168.0.0/24

• T120PortRange=40000-40999
Default: N/A (let the OS allocate ports) Specify the range of TCP port number for T.120
data channels. Note the range size may limit the number of concurrent calls. See remarks about
TIME_WAIT socket state timeout in the Q931PortRange description.

• RTPPortRange=50000-59999
Default: 1024-65535 Specify the range of UDP port number for RTP/RTCP channels. Note the range
size may limit the number of concurrent calls.

• ProxyForNAT=1
Default: 1 If yes, the gatekeeper will proxy for calls to which one of the endpoints participated is

5. Routing Con�guration 26

behind an NAT box. This ensure the RTP/RTCP stream can penetrate into the NAT box without
modifying it. However, the endpoint behind the NAT box must use the same port to send and receive
RTP/RTCP stream. If you have bad or broken endpoints that don't satisfy the precondition, you have
better to disable this feature and let the NAT box forward RTP/RTCP stream for you.

• ProxyForSameNAT=0
Default: 0 Whether to proxy for calls between endpoints from the same NAT box. You do not need to
enable this feature in general, since usually endpoints from the same NAT box can communicate with
each other.

5 Routing Con�guration

The following sections in the con�g �le can be used to con�gure how calls are routed.

5.1 Section [RoutingPolicy]

This section explains how the various possible routing policies within the gatekeeper work.

The incoming call requests can be routed using a number of routing providers:

• explicit
The destination is explicitly speci�ed in the routing request.

• internal
The classical rule; search the destination in RegistrationTable

• parent
Route the call using information sent by the parent GK in reply to an ARQ the gatekeeper will send.

• neighbor
Route the call using neighbors by exchanging LRQ messages

• dns
The destination is resolved from DNS, provided it is resolvable

• vqueue
Use the virtual queue mechanism and generate a RouteRequest event to let an external application do
the routing (can only be used OnARQ)

• numberanalysis
Provides support for overlapped digit sending for ARQ messages.

• enum
ENUM (RFC3761) is a method to use DNS lookup to convert real IDD E164 numbers into H323
dialing information. The servers it looks up by default are e164.org and apra.org. To specify your
own server you have to specify an environmental variable PWLIB_ENUM_PATH with the address
of your preferred enum servers separated by a semicolon (;). (PWLIB_ENUM_PATH is supported
starting with PWLib 1.8.0; 1.7.5.2 (Pandora) doesn't support it.)

Default con�guration for routing policies is as follows:

[RoutingPolicy]
default=explicit,internal,parent,neighbor

5. Routing Con�guration 27

If one policy does not match, the next policy is tried.

These policies can be applied to a number of routing request types, and routing input data. The di�erent
types are: ARQ, LRQ, Setup and Facility (with the callForwarded reason) There is also the general routing
policy, which is kind of a default for the other types.

Example:

[RoutingPolicy]
h323_ID=dns,internal
002=neighbor,internal
Default=internal,neighbor,parent

When one of the messages is received which calls for a routing decision, all calls to an alias of the h323_ID
type will be resolved using DNS. If DNS fails to resolve the alias, it is matched against the internal registration
table. If a call is requested to an alias starting with 002, �rst the neighbours are checked and then the internal
registration table. If the requested alias is not an h323_ID or an alias starting with 002, the default policy
is used by querying the internal registration table, then the neighbours, and if that fails the parent.

For the ARQ, LRQ, Setup and Facility messages one would use the [RoutingPolicy::OnARQ], [RoutingPol-
icy::OnLRQ], [RoutingPolicy::OnSetup] and [RoutingPolicy::OnFacility] sections using the syntax explained
above.

Example:

[RoutingPolicy::OnARQ]
default=numberanalysis,internal,neighbor

5.2 Section [RasSrv::RewriteE164]

This section de�nes the rewriting rules for dialedDigits (E.164 number).

Format:
[!]original-prefix=target-prefix

If the number is beginning with original-prefix, it is rewritten to target-prefix. If the `!' �ag
precedes the original-prefix, the sense is inverted and the target-pre�x is prepended to the dialed
number. Special wildcard characters ('.' and '%') are available.

Example:
08=18888

If you dial 08345718, it is rewritten to 18888345718.

Example:
!08=18888

If you dial 09345718, it is rewritten to 1888809345718.

Option:

• Fastmatch=08
Default: N/A Only rewrite dialDigits beginning with the speci�ed pre�x.

5. Routing Con�guration 28

5.3 Section [RasSrv::GWRewriteE164]

This section describes rewriting the dialedDigits E.164 number depending on the gateway a call has come
from or is being sent to. This allows for more �exible manipulation of the dialedDigits for routing etc. In
combination with the 5.2 (RasSrv::RewriteE164) you can have triple stage rewriting:

Call from "gw1", dialedDigits 0867822
|
|
V

Input rules for "gw1", dialedDigits now 550867822
|
|
V

Global rules, dialedDigits now 440867822
|
|
V

Gateway selection, dialedDigits now 440867822, outbound gateway "gw2"
|
|
V

Output rules for "gw2", dialedDigits now 0867822
|
|
V

Call to "gw2", dialedDigits 0867822

Format:
gw-alias=in|out=[!]original-prefix=target-prefix[;in|out...]
If the call matches the gateway, the direction and begins with original-prefix it is rewritten to
target-prefix. If the `!' �ag precedes the original-prefix, the sense is inverted. Special wildcard
characters ('.' and '%') are available. Multiple rules for the same gateway should be seperated by
';'.

Example:
gw1=in=123=321

If a call is received from "gw1" to 12377897, it is rewritten to 32177897 before further action is taken.

5.4 Section [Endpoint::RewriteE164]

Once you specify pre�x(es) for your gatekeeper endpoint, the parent gatekeeper will route calls with dialed-
Digits beginning with that pre�xes. The child gatekeeper can rewrite the destination according to the rules
speci�ed in this section. By contrast, when an internal endpoint calls an endpoint registered to the parent
gatekeeper, the source will be rewritten reversely.

Format:
external prefix=internal prefix

For example, if you have the following con�guration,

5. Routing Con�guration 29

[Parent GK]
ID=CitronGK
/ \

/ \
/ \

/ \
[Child GK] [EP3]
ID=ProxyGK E164=18888200
Prefix=188886
/ \

/ \
/ \

[EP1] [EP2]
E164=601 E164=602

With this rule:

188886=6

When EP1 calls EP3 by 18888200, the CallingPartyNumber in the Q.931 Setup will be rewritten to
18888601. Conversely, EP3 can reach EP1 and EP2 by calling 18888601 and 18888602, respectively. In
consequence, an endpoint registered to the child GK with pre�x '6' will appear as an endpoint with pre�x
'188886', for endpoints registered to the parent gatekeeper.

The section does not relate to the section 5.2 (RasSrv::RewriteE164), though the later will take e�ect �rst.

5.5 Section [Routing::NumberAnalysis]

This section de�nes rules for the numberanalysis routing policy. The policy checks a dialed number for
minimum and/or maximum number of digits and sends ARJ, if neccessary (number of digits is out of range),
to support overlapped digit sending.

Format:
prefix=MIN_DIGITS[:MAX_DIGITS]

If the number matches the prefix, it is veri�ed to consist of at least MIN_DIGITS digits and (if
MAX_DIGITS is present) at most MAX_DIGITS digits. Special wildcard characters (!, '.' and '%')
are available. If the number is too short, an ARJ is send with rejectReason set to incompleteAddress.
If the number is too long, an ARJ is send with rejectReason set to undefinedReason. Pre�x list is
searched from the longest to the shortest pre�x for a match.

Example:

[RoutingPolicy::OnARQ]
default=numberanalysis,internal

[Routing::NumberAnalysis]
0048=12
48=10
.=6:20

Calls to destinations starting with 0048 require at least 12 digits, to 48 - 10 digits and to all other at
least 6 and at most 20 digits.

5. Routing Con�guration 30

5.6 Section [RewriteCLI]

This section contains a set of rewrite rules for ANI/CLI numbers (caller id). The rewrite process is done
at two stages - inbound rewrite and outbound rewrite. The inbound rewrite is done before any other Q.931
Setup message processing (like inbound GWRewrite, authentication, accounting, ...) and it will have visible
e�ect inside auth/acct modules, as it a�ects Calling-Station-Id. The outbound rewrite takes place just before
the Setup message is to be forwarded and its e�ect is visible only to the callee.

An inbound rewrite rule can be matched by a caller's IP and a dialed number or an original CLI/ANI. An
outbound rewrite rule can be matched by a caller's IP, callee's IP and a dialed number or a destination
number (the dialed number after rewrite) or a CLI/ANI (after inbound rewrite).

This module also provides CLIR (Calling Line Identi�cation Restriction) feature that can be con�gured for
each endpoint (rule).

• ProcessSourceInfo=1
Default: 1 In addition to rewritting a Calling-Party-Number IE also a sourceInfo element of a H.225.0
Setup message can be rewritten, so both contain consistent information.

• RemoveH323Id=1
Default: 1 When a sourceInfo element of an H.225.0 Setup message is rewritten, aliases of type
H323_ID, email_ID and url_ID can be left untouched if this option is disabled.

• CLIRPolicy=apply
Default: N/A Here a global presentation indicator processing policy can be set up. This policy will be
applied to all CLI rewrite rules that do not override it. Possible choices are forward - just forward the
received PI as is, apply - examine the received PI and hide CLI if it is set to "presentation restricted"
and applyforterminals - similar to apply except that the number is removed only when the call is
send to a terminal, not a gateway.

Format for an inbound rule:
in:CALLER_IP=[pi=[allow|restrict][,forward|apply|applyforterminals]]
[cli:|dno:]number_prefix(=|*=|�=)NEW_CLI[,NEW_CLI]...
The in: pre�x tells that this is an inbound rule and the CALLER_IP will be used to match the rule (it
can be a single IP or a whole subnet).

The optional pi= parameter controls CLIR (Calling Line Identi�cation Restriction) features. Speci-
fying either allow or restrict forces presentation indicator to be set to "presentation allowed" or
"presentation restricted". forward, apply and applyforterminals controls how the received (if any)
presentation indicator is processed by the gatekeeper. forward means just to forward it to the callee
as is, apply means hiding CLI if the PI is set to "presentation restricted", applyforterminals is
similar to apply, except that CLI is hidden only when sending the call to a terminal, not a gateway.

The pre�x cli: or dno: (the default) selects what number will be used to match the number_prefix
- a caller id (CLI/ANI) or a dialed number. Number matching/rewritting can be done in three ways:

• = - a cli or dno number will be matched using a pre�x match against number_prefix and, if the
match is found, CLI will be replaced with NEW_CLI,

• �= - a cli or dno number will be matched using an identity match against number_prefix and,
if both numbers are the same, CLI will be replaced with NEW_CLI,

5. Routing Con�guration 31

• *= - (VALID ONLY FOR cli) a cli number will be matched using a pre�x match against
number_prefix and, if the match is found, the matched CLI pre�x (number_prefix) will be
replaced with a NEW_CLI pre�x.

After the equality (=/ =/*=) sign, there follows a list of new CLI values to be used. If more than
one value is speci�ed, a one will be choosen on a random basis. It's possible to specify whole number
ranges, like 49173600000-49173699999. There is a special string constant "any", that can be used
in place of the CALLER_IP or the number_prefix. To enable CLIR for this rule, use a special string
constant "hide" instead of the list of new CLI values. Note that CLIR is far more useful for outbound
rules.

Example 1:

[RewriteCLI]
in:192.168.1.1=dno:5551=3003
in:192.168.1.1=cli:1001=2222
in:192.168.1.1=any=1111

These rules tell that for calls from the IP 192.168.1.1: 1) if the user dialed a number beginning with
5551, set CLI to 3003, 2) if the call is from user with CLI beginning with 1001, set CLI to 2222, 3) for
other calls from this IP, set CLI to 1111.

Example 2:

[RewriteCLI]
in:192.168.1.0/24=any=18001111
in:192.168.2.0/24=any=18002222
in:any=any=0

These rules tell that: 1) for calls from the network 192.168.1.0/24, set CLI to 18001111, 2) for calls
from the network 192.168.2.0/24, set CLI to 18002222, 3) for other calls, set CLI to 0.

Example 3:

[RewriteCLI]
%r1% in:192.168.1.0/24=0048*=48
%r2% in:192.168.1.0/24=0*=48
in:any=100.~=48900900900

These rules tell that: 1) for calls from the network 192.168.1.0/24, rewrite 0048 to 48 (example -
0048900900900 => 48900900900), 2) for other calls from the network 192.168.1.0/24, rewrite 0 to 48
(example - 0900900900 => 48900900900), 3) for other calls, if CLI is 4 digits and starts with 100, set
it to 48900900900.

Example 4 (CLIR):

[RewriteCLI]
in:192.168.1.0/24=any=hide

This example causes caller's number to be removed from Setup messages originating from the
192.168.1.0/24 network. It also causes proper presentation and screening indicators to be set in Setup
messages.

Format for an outbound rule:
out:CALLER_IP=CALLEE_IP [pi=[allow|restrict][,forward|apply|applyforterminals]]
[cli:|dno:|cno:]number_prefix(=|�=|*=)NEW_CLI[,NEW_CLI]...

5. Routing Con�guration 32

The out: pre�x tells that this is an outbound rule, the CALLER_IP and the CALLEE_IP will be used to
match the rule and can be a single IP or a whole network address.

The optional pi= parameter controls CLIR (Calling Line Identi�cation Restriction) features. Speci-
fying either allow or restrict forces presentation indicator to be set to "presentation allowed" or
"presentation restricted". forward, apply and applyforterminals controls how the received (if any)
presentation indicator is processed by the gatekeeper. forward means just to forward it to the callee
as is, apply means hiding CLI if the PI is set to "presentation restricted", applyforterminals is
similar to apply, except that CLI is hidden only when sending the call to a terminal, not a gateway.

The pre�x cli:, dno: (the default) or cno: selects what number will be used to match the
number_prefix - a caller id (CLI/ANI), a dialed number or a destination/called number (the dialed
number after rewrite). Number matching/rewritting can be done in three ways:

• = - a cli or dno number will be matched using a pre�x match against number_prefix and, if the
match is found, CLI will be replaced with NEW_CLI,

• �= - a cli or dno number will be matched using an identity match against number_prefix and,
if both numbers are the same, CLI will be replaced with NEW_CLI,

• *= - (VALID ONLY FOR cli) a cli number will be matched using a pre�x match against
number_prefix and, if the match is found, the matched CLI pre�x (number_prefix) will be
replaced with a NEW_CLI pre�x.

After the equality sign (=/ =/*=), a list of new CLI values to be used follows. If more than one value
is speci�ed, a one will be choosen on a random basis. It's possible to specify whole number ranges,
like 49173600000-49173699999. There is a special string constant "any", that can be used in place of
the CALLER_IP, the CALLEE_IP or the number_prefix. To enable CLIR for this rule, se a special string
constant "hide" or "hidefromterminals" instead of the list of new CLI values.

Example 1:

[RewriteCLI]
out:any=192.168.1.1 any=1001
out:any=192.168.1.2 any=1002

These rules set a �xed ANI/CLI for each terminating IP: 1) present myself with ANI 1001, when
sending calls to IP 192.168.1.1, 2) present myself with ANI 1002, when sending calls to IP 192.168.1.2.

Example 2:

[RewriteCLI]
out:any=192.168.1.1 any=1001-1999,3001-3999

This rule randomly selects ANI/CLI from range 1001-1999, 3001-3999 for calls sent to 192.168.1.1.

Example 3 (CLIR):

[RewriteCLI]
out:any=any any=hidefromterminals
out:192.168.1.1=any any=hide

In this example each subscriber has enabled CLIR. So all calls to terminals will have a caller's number
removed and presentation/screening indicators set. Calls to gateways will have only a presentation
indicator set to "presention restricted" and the caller's number will not be removed to allow proper
call routing and number removal at the destination equipment.
One exception to these rules are calls from 192.168.1.1 which will have a caller's number always removed,
no matter whether calling a terminal or a gateway.

6. RAS Con�guration 33

Example 4 (CLIP):

[RewriteCLI]
out:any=192.168.1.1 any=hide

In this example CLIP (Calling Line Identi�cation Presentation) feature is disabled for the user
192.168.1.1.

Example 5 (CLIR):

[RewriteCLI]
out:192.168.1.1=any pi=restrict,apply cli:.*=.
out:any=any pi=allow cli:.*=.

These rules do not change CLI (.*=.) and: 1) enable CLIR for an endpoint 192.168.1.1. apply tells
the gatekeeper to not only set the PI, but also to hide the number actually, 2) force CLI presentation
for other endpoints.

Rule matching process has a strictly de�ned order:

1. the closest caller's IP match is determined (closest means with the longest network mask - single IPs
have the highest priority, "any" has the lowest priority),

2. (outbound rules) the closest callee's IP match is determined,

3. the longest matching pre�x/number is searched for the given IP/IP pair in the following order:

(a) dno: type (dialed number) rules are searched,
(b) cno: type (destination/called number) rules are searched,
(c) cli: type (caller id) rules are searched.

After a match for caller's/caller's IP is found, no more rules are checked, even if no pre�x/number is matched
inside the set of rules for these IPs.

On Windows platform, there is a problem with duplicated con�g keys, so there is a workaround for this
restriction. This example will not work because of the same key (in:192.168.1.1):

[RewriteCLI]
in:192.168.1.1=1001=2001
in:192.168.1.1=any=2000

As the workaround, you can use a string with percent signs (%) at the beginning and at the end before the
key. This pre�x will be automatically stripped from the key name before loading rules:

[RewriteCLI]
%r1% in:192.168.1.1=1001=2001
%r2% in:192.168.1.1=any=2000

6 RAS Con�guration

6.1 Section [RasSrv::GWPre�xes]

This section lists what E.164 numbers are routed to a speci�c gateway.

6. RAS Con�guration 34

Format:
gw-alias=prefix[,prefix,...]

Note you have to specify the alias of the gateway. If a gateway registered with the alias, all numbers
beginning with the pre�xes are routed to this gateway. Special characters . and ! can be used here
to match any digit and disable the pre�x.

Example:
test-gw=02,03

6.2 Section [RasSrv::PermanentEndpoints]

In this section you can put endpoints that don't have RAS support or that you don't want to be expired.
The records will always keep in registration table of the gatekeeper. However, You can still unregister it via
status port. Special characters . and ! can be used with pre�xes here to match any digit and disable the
pre�x.

Format:
IP[:port]=alias[,alias,...;prefix,prefix,...]

Example:
For gateway,

10.0.1.5=Citron;009,008

For terminal,

10.0.1.10:1720=700

6.3 Section [RasSrv::RRQFeatures]

• AcceptEndpointIdentifier=1
Default: 1 Whether to accept endpointIdenti�er speci�ed in a full RRQ.

• AcceptGatewayPrefixes=1
Default: 1 A gateway can register its pre�xes with the gatekeeper by containing supportedPre�xes
in the terminalType �eld of RRQ. This option de�nes whether to accept the speci�ed pre�xes of a
gateway.

• OverwriteEPOnSameAddress=1
Default: 0 In some networks an endpoint's IP address may change unexpectedly. This may happen
when an endpoint is using a PPP connection (e.g. modem or ADSL). This option de�nes how to handle
a registration request (RRQ) from an IP address which does not match what we have stored. The
default action is to reject the request. With this option enabled the con�icting request will cause an
unregister request (URQ) to be sent for the existing IP address and the entry to be removed allowing
the endpoint to register with the new address.

• IRQPollCount=0
Default: 1When the gatekeeper does not receive a keep-alive RRQ from an endpoint within TimeToLive
time period, it sends an IRQ message to "poll" the endpoint and check if it is alive. After IRQPollCount
messages are sent and no reply is receieved, the endpoint is unregistered. To disable this feature (and
unregister endpoints immediatelly after TimeToLive timeout), set this variable to 0. IRQ poll interval
is 60 seconds.

7. Authentication Con�guration 35

6.4 Section [RasSrv::ARQFeatures]

• ArjReasonRouteCallToSCN=0
Default: 1 If yes, the gatekeeper rejects a call from a gateway to itself by reason routeCallToSCN.

• ArjReasonRouteCallToGatekeeper=1
Default: 1 If yes, the gatekeeper rejects an answered ARQ without a pre-existing CallRec found in the
CallTable by reason routeCallToGatekeeper in routed mode. The endpoint shall release the call
immediately and re-send call Setup to the gatekeeper.

• CallUnregisteredEndpoints=0
Default: 1 With this option set on, the gatekeeper will accept an ARQ from a registered endpoint
with destCallSignalAddress, no matter the address is belongs to a registered endpoint or not. That
means you can explicitly specify the IP of endpoint (registered or not) you want to call.

• RemoveTrailingChar=#
Default: N/A Specify the trailing character to be removed in destinationInfo. For example, if your
endpoint incorrectly contains the termination character like `#' in destinationInfo, you may remove
it by this option.

• RoundRobinGateways=0
Default: 1 Enable/disable round-robin gateway selection, if more than one gateway matches a dialed
number. If disabled, the �rst available gateway will be selected. Otherwise, subsequent calls will be
sent to gateways in round-robin fashion.

6.5 Section [NATedEndpoints]

The gatekeeper can automatically detect whether an endpoint is behind NAT. However, if the detection fails,
you can specify it manually in this section.

Format:
alias=true,yes,1,...

Example:
Specify an endpoint with alias 601 is behind NAT.

601=true

7 Authentication Con�guration

The following sections in the con�g �le can be used to con�gure authentication.

7.1 Section [Gatekeeper::Auth]

The section de�nes the authentication mechanism for the gatekeeper.

Syntax:

authrule=actions

<authrule> := SimplePasswordAuth | AliasAuth | FileIPAuth | PrefixAuth | RadAuth | RadAliasAuth | SQLAuth | SQLAliasAuth | SQLPasswordAuth | ...

7. Authentication Con�guration 36

<actions> := <control>[;<ras>|<q931>,<ras>|<q931>,...]
<control> := optional | required | sufficient
<ras> := GRQ | RRQ | URQ | ARQ | BRQ | DRQ | LRQ | IRQ
<q931> := Setup | SetupUnreg

A rule may results in one of the three codes: ok, fail, pass.

• ok - The request is authenticated by this module.

• fail - The authentication fails and should be rejected.

• next - The rule cannot determine the request.

There are also three ways to control a rule:

• optional - If the rule cannot determine the request, it is passed to next rule.

• required - The requests should be authenticated by this module, or it would be rejected. The authen-
ticated request would then be passwd to next rule.

• sufficient - If the request is authenticated, it is accepted, or it would be rejected. That is, the rule
determines the fate of the request. No rule should be put after a su�cient rule, since it won't take
e�ect.

Currently supported modules:

• SimplePasswordAuth/SQLPasswordAuth These modules check the tokens or cryptoTokens �elds of
RAS message. The tokens should contain at least generalID and password. For cryptoTokens,
cryptoEPPwdHash tokens hashed by simple MD5 and nestedcryptoToken tokens hashed by
HMAC-SHA1-96 (libssl must be installed!) are supported now. For tokens tokens hashed by CAT
(Cisco Access Token) and a clear text username/password are supported now. The ID and password
are read from 7.3 ([SimplePasswordAuth]) section, an SQL database for SimplePasswordAuth and
SQLPasswordAuth modules. MySQLPasswordAuth module is supported for backward compatibility.

• AliasAuth/SQLAliasAuth The module can only be used to authenticate RegistrationRequest (RRQ).
The IP of an endpoint with a given alias should match a speci�ed pattern. For AliasAuth the pattern
is de�ned in 7.5 ([RasSrv::RRQAuth]) section. For SQLAliasAuth, the pattern is retrieved from an
SQL database, de�ned in 7.6 ([SQLAliasAuth]) section.

• FileIPAuth This module provides a simple way to restrict access to the gatekeeper based on caller's
IP/network.

• PrefixAuth The IP or aliases of a request with a given pre�x must match a speci�ed pattern. See
section 7.8 ([Pre�xAuth]) for details. Currently the module can only authorize AdmissionRequest
(ARQ) and LocationRequest (LRQ).

• RadAuth Provides authentication based on H.235 username/password security scheme. Authenticates
RRQ, ARQ and Q.931 Setup through remote RADIUS servers. It passes to RADIUS servers usernames
and passwords extracted from CAT (Cisco Access Tokens) tokens carried inside RRQ, ARQ or Setup
packets. Therefore if your endpoints do not support CATs or you do not need authentication scheme
based on individually assigned usernames/password - this module will not work for you (but you may
check RadAliasAuth module). See section 7.9 ([RadAuth]) for details.

• RadAliasAuth Provides authentication based on endpoint aliases and/or call signalling IP addresses
with remote RADIUS servers. It does not need any H.235 tokens inside RAS messages, so it can be
used on a wider range of systems as compared to RadAuth. RRQ, ARQ and Q.931 Setup messages can
be authenticated using this module. See section 7.10 ([RadAliasAuth]) for details.

7. Authentication Con�guration 37

• SQLAuth A powerful module to authenticate and authorize RRQ, ARQ, LRQ and Setup messages.
It can perform checks based on various parameters, like caller's number, destination number, user-
name and more. It also supports enforcing call duration limit, number rewritting, call routing, alias
veri�cation and assignment. See section 7.7 ([SQLAuth]) for more details.

You can also con�gure a rule to check only for some particular RAS messages. The following example
con�gures SimplePasswordAuth as an optional rule to check RRQ and ARQ. If an RRQ is not checked (not
contains tokens or cryptoTokens �elds), it is checked by AliasAuth. The default is to accept all requests.

Example 1:
SimplePasswordAuth=optional;RRQ,ARQ
AliasAuth=sufficient;RRQ

The example below authenticates all calls, checking signalling Setup message details, using RadAliasAuth
module.

Example 2:
RadAliasAuth=required;Setup
default=allow

This example checks endpoint registrations (RRQ) and call admissions (ARQ) either by means of user-
name/password (RadAuth) or alias/IP (RadAliasAuth). Additionally, if the call is from an unregistered
endpoint (and therefore no RRQ or ARQ authentication has been performed), Setup message authentication
using RadAliasAuth takes place (SetupUnreg).

Example 3:
RadAuth=optional;RRQ,ARQ
RadAliasAuth=required;RRQ,ARQ,SetupUnreg
default=allow

7.2 Section [FileIPAuth]

This section de�nes a list of IP addresses/networks which are allowed to access gatekeeper resources. Sup-
ported Gatekeeper::Auth events are: GRQ, RRQ, LRQ, Setup and SetupUnreg. Format of a single entry is:

IP=[allow | reject]
where IP is a single IP addresss, a network address (in A.B.C.D/M.M.M.M or A.B.C.D/LENGTH format)
or a string 'any' or '*' to match any address. The access list can also be loaded from an external �le
using include directive. During authentication, network mask length de�nes a priority for each entry, so
rule 192.168.1.1=allow takes precedence over 192.168.1.0/24=reject.

Example #1:

[Gatekeeper::Auth]
FileIPAuth=required;RRQ,LRQ,Setup

[FileIPAuth]
192.168.1.240=reject
192.168.1.0/24=allow
192.168.2.0/255.255.255.0=allow
any=reject

7. Authentication Con�guration 38

Example #2:

[Gatekeeper::Auth]
FileIPAuth=required;Setup

[FileIPAuth]
include=/etc/gnugk/accesslist.ini

(EOF)

Contents of /etc/gnugk/accesslist.ini:

[FileIPAuth]
192.168.1.1=allow
192.168.1.100=allow
any=reject

7.3 Section [SimplePasswordAuth]

The section de�nes the userid and password pairs used by SimplePasswordAuth module. All passwords are
encrypted using the addpasswd utility.

Usage:

addpasswd config section userid password

Options:

• KeyFilled=123
Default: 0 Default value to use as a padding byte during password encryption/decryption.

• CheckID=1
Default: 0 Check if the aliases match the ID in the tokens.

• PasswordTimeout=120
Default: -1 The module SimplePasswordAuth and all its descendants will cache an authenticated
password. This �eld de�ne the cache timeout value in second. 0 means never cache the password,
while a negative value means the cache never expires.

7.4 Section [SQLPasswordAuth]

Authenticate H.235 enabled endpoints using passwords stored in the SQL database. This section de�nes
SQL driver to use, SQL database connection parameters and the query to use to retrieve passwords.

• Driver=MySQL | PostgreSQL
Default: N/A SQL database driver to use. Currently, MySQL and PostgreSQL drivers are implemented.

• Host=DNS[:PORT] | IP[:PORT]
Default: localhost SQL server host address. Can be in the form of DNS[:PORT] or IP[:PORT]. Like
sql.mycompany.com or sql.mycompany.com:3306 or 192.168.3.100.

• Database=billing
Default: billing The database name to connect to.

7. Authentication Con�guration 39

• Username=gnugk
The username used to connect to the database.

• Password=secret
The password used to connect to the database. If the password is not speci�ed, a database connection
attempt without any password will be made. If EncryptAllPasswords is enabled, or a KeyFilled
variable is de�ned in this section, the password is in an encrypted form and should be created using
the addpasswd utility.

• CacheTimeout=120
Default: 0 This �eld de�nes how long (alias;password) pairs retrieved from the database will be cached
in the local memory. The cache timeout value is expressed in seconds. 0 means to not cache passwords,
while a negative value means the cache never expires (only reload command will refresh the cache).

• MinPoolSize=5
Default: 1 De�ne the number of active SQL connections. This allows better peformance under heave
load, because more than 1 concurrent query can be executed at the same time. MinPoolSize=1 setting
simulates old behaviour, when access to the SQL database is serialized (one query at time).

• Query=SELECT ...
Default: N/A De�nes SQL query used to retrieve H.235 password from the database. The query is
parametrized - that means parameter replacement is made before each query is executed. Parameter
placeholders are denoted by %1, %2, ... strings. Specify %% to embed a percent character before a
digit into string (like%%1), specify%{1} to allow expansion inside complex expressions like%{1}123.
For SQLPasswordAuth two parameters are de�ned:

� %1 - the actual alias to query the password for
� %2 - the gatekeeper identi�er

Sample query strings:

SELECT h235password FROM users WHERE alias = '%1' AND active
SELECT h235password FROM users WHERE alias = '%1' AND gk = '%2'

7.5 Section [RasSrv::RRQAuth]

Specify the action on RRQ reception (con�rm or deny) for AliasAuth module. The �rst alias (this will
mostly be an H323ID) of the endpoint to register is looked up in this section. If a parameter is found the
value will apply as a rule. A rule consists of conditions separated by "&". A registration is accepted when
all conditions apply.

Syntax:

<authrules> := empty | <authrule> "&" <authrules>

<authrule> := <authtype> ":" <authparams>
<authtype> := "sigaddr" | "sigip"
<autparams> := [!&]*

The notation and meaning of <authparams> depends on <authtype>:

• sigaddr - extended regular expression that has to match agains the �PrintOn(ostream)� representation
of the signal address of the request. Example:

7. Authentication Con�guration 40

sigaddr:.*ipAddress .* ip = .* c0 a8 e2 a5 .*port = 1720.*

• sigip - specialized form of `sigaddr'. Write the signalling ip adresse using (commonly used) decimal
notation: �byteA.byteB.byteC.byteD:port�. Example:

sigip:192.168.242.165:1720

• allow - always accept the alias.

• deny - always reject the alias.

7.6 Section [SQLAliasAuth]

Authenticate endpoints using rules stored in the SQL database (the rules conform to the format de�ned in
the 7.5 ([RasSrv::RRQAuth]) section). This section de�nes SQL driver to use, SQL database connection
parameters and the query to use to retrieve the patterns.

• Driver=MySQL | PostgreSQL
Default: N/A SQL database driver to use. Currently, MySQL and PostgreSQL drivers are implemented.

• Host=DNS[:PORT] | IP[:PORT]
Default: localhost SQL server host address. Can be in the form of DNS[:PORT] or IP[:PORT]. Like
sql.mycompany.com or sql.mycompany.com:3306 or 192.168.3.100.

• Database=billing
Default: billing The database name to connect to.

• Username=gnugk
The username used to connect to the database.

• Password=secret
The password used to connect to the database. If the password is not speci�ed, a database connection
attempt without any password will be made. If EncryptAllPasswords is enabled, or a KeyFilled
variable is de�ned in this section, the password is in encrypted form and should be created using the
addpasswd utility.

• CacheTimeout=120
Default: 0 This �eld de�nes how long (alias;authrule) pairs retrieved from the database will be cached
in the local memory. The cache timeout value is expressed in seconds. 0 means to not cache rules,
while a negative value means the cache never expires (only reload command will refresh the cache).

• MinPoolSize=5
Default: 1 De�ne the number of active SQL connections. This allows better peformance under heave
load, because more than 1 concurrent query can be executed at the same time. MinPoolSize=1 setting
simulates old behaviour, when access to the SQL database is serialized (one query at time).

• Query=SELECT ...
Default: N/ADe�nes SQL query used to retrieve alias rule from the database. The query is parametrized
- that means parameter replacement is made before each query is executed. Parameter placeholders
are denoted by %1, %2, ... strings. Specify %% to embed a percent character before a digit into
string (like %%1), specify %{1} to allow expansion inside complex expressions like %{1}123. For
SQLAliasAuth two parameters are de�ned:

� %1 - the actual alias to query the rule for
� %2 - the gatekeeper identi�er

7. Authentication Con�guration 41

Sample query strings:

SELECT authrule FROM users WHERE alias = '%1' AND active
SELECT 'sigip:' || host(ip) || port FROM users WHERE alias = '%1'

7.7 Section [SQLAuth]

Authenticate and authorize endpoints/calls using an SQL database. Support for RRQ, ARQ, LRQ and
Setup events is provided.

• Driver=MySQL | PostgreSQL
Default: N/A SQL database driver to use. Currently, MySQL and PostgreSQL drivers are implemented.

• Host=DNS[:PORT] | IP[:PORT]
Default: localhost SQL server host address. Can be in the form of DNS[:PORT] or IP[:PORT]. Like
sql.mycompany.com or sql.mycompany.com:3306 or 192.168.3.100.

• Database=billing
Default: billing The database name to connect to.

• Username=gnugk
The username used to connect to the database.

• Password=secret
The password used to connect to the database. If the password is not speci�ed, a database connection
attempt without any password will be made. If EncryptAllPasswords is enabled, or a KeyFilled
variable is de�ned in this section, the password is in encrypted form and should be created using the
addpasswd utility.

• MinPoolSize=5
Default: 1 De�ne the number of active SQL connections. This allows better peformance under heave
load, because more than 1 concurrent query can be executed at the same time. MinPoolSize=1 setting
simulates old behaviour, when access to the SQL database is serialized (one query at time).

• RegQuery=SELECT ...
Default: N/A De�ne an SQL qeury to be used to perform authentication and authorization of endpoint
registrations. The query is parametrized - that means parameter replacement is made before each
query is executed. The following parameters are de�ned:

� %g - the gatekeeper identi�er
� %{gkip} - a gatekeeper IP the request has been received on
� %u - username associated with an endpoint (usually an H.323 ID)
� %{callerip} - caller's IP (the request has been received from - NAT IP for natted endpoints)
� %{aliases} - a comma separated list of endpoint aliases

If the query returns no rows, the result is unde�ned, which basically means failure for required
rules and "try next" for optional rules. Otherwise, the �rst result row is examined to determine
authentication result and get additional information:

1. The �rst column is converted into a boolean value (1, T, TRUE, allow, y, yes means true) and is
an authentication result (accept/reject).

2. If the registration is authenticated successfully, remaining columns are examined:

7. Authentication Con�guration 42

(a) If there exists a column called 'aliases', replace original endpoint aliases with these new
ones

(b) If there exists a column called 'billingmode', set a billing mode associated with the endpoint
(0 - credit,

(c) 0 - debit)
(d) If there exists a column called 'creditamount', set account balance associated with the

endpoint (this is an arbitrary string)

Query string examples:

SELECT 1, 0 AS billingmode, '12.00 USD' AS creditamount
SELECT NOT disabled, assignaliases AS aliases, balance FROM users WHERE h323id = '%u'
SELECT * FROM get_registration_auth('%g', '%u', '%{callerip}', '%{aliases}') AS result(accept, aliases, billingmode, creditamount)

• NbQuery=SELECT ...
Default: N/A De�ne an SQL qeury to be used to perform authentication and authorization of location
requests sent from neighbors. The query is parametrized - that means parameter replacement is made
before each query is executed. The following parameters are de�ned:

� %g - the gatekeeper identi�er
� %{gkip} - a gatekeeper IP the request has been received on
� %{nbid - neighbor identi�er from the con�g
� %{nbip} - neighbor IP (the request has been received from)
� %{Calling-Station-Id} - caller's number, if available
� %{src-info} - content of sourceInfo LRQ �eld, if available
� %{Called-Station-Id} - destination number
� %{dest-info} - content of destinationInfo LRQ �eld
� %{bandwidth} - requested bandwidth, if present in the LRQ

If the query returns no rows, the result is unde�ned, which basically means failure for required
rules and "try next" for optional rules. Otherwise, the �rst result row is examined to determine
authentication result and get additional information:

1. The �rst column is converted into a boolean value (1, T, TRUE, allow, y, yes means true) and is
an authentication result (accept/reject).

2. If the request is authenticated successfully, remaining columns are examined:
(a) If there exists a column called 'destination', populate the original destinationInfo �eld

with these new aliases - this may a�ect routing decision, which is made after auth step

Query string examples:

SELECT active FROM neighbors WHERE name = '%{nbid}' AND ip = '%{nbip}' UNION SELECT 0

• CallQuery=SELECT ...
Default: N/A De�ne an SQL qeury to be used to perform authentication and authorization of calls
(ARQ and Setup). The query is parametrized - that means parameter replacement is made before each
query is executed. The following parameters are de�ned:

� %g - the gatekeeper identi�er
� %{gkip} - a gatekeeper IP the request has been received on
� %u - an username associated with the caller

7. Authentication Con�guration 43

� %{callerip} - caller's IP (the request has been received from - NAT IP for natted endpoints)
� %{Calling-Station-Id} - caller's number, if available
� %{Called-Station-Id} - destination number
� %{Dialed-Number} - original destination number (before rewrite)
� %{bandwidth} - requested bandwidth, if present in the ARQ
� %{answer} - 1, if the request is an answering ARQ
� %{arq} - 1 for ARQ triggered query, 0 for Setup triggered query

If the query returns no rows, the result is unde�ned, which basically means failure for required
rules and "try next" for optional rules. Otherwise, the �rst result row is examined to determine
authentication result and get additional information:

1. The �rst column is converted into a boolean value (1, T, TRUE, allow, y, yes means true) and is
an authentication result (accept/reject the call).

2. If the request is authenticated successfully, remaining columns are examined:
(a) If there exists a column called 'billingmode', set a billing mode associated with the endpoint

(0 - credit,
(b) 0 - debit)
(c) If there exists a column called 'creditamount', set account balance associated with the

endpoint (this is an arbitrary string)
(d) If there exists a column called 'credittime', use its integer value to set call duration limit
(e) If there exists a column called 'redirectnumber', replace the original destination number

with this one
(f) If there exists a column called 'redirectip', force the call to be sent to the speci�ed IP
(g) If there exists a column called 'proxy', force the gatekeeper to enable/disable (depends on

the 'proxy' column value) RTP proxy for this call

Query string examples:

SELECT 1, 360 AS credittime, 0 AS proxy
SELECT * FROM auth_call('%g', '%u', '%{Calling-Station-Id}', '%{callerip}', '%{Called-Station-Id}') AS result(accept, credittime)
SELECT 1, '1234' AS redirectnumber, '192.168.1.1' AS redirectip

7.8 Section [Pre�xAuth]

The section de�nes the authentication rule for PrefixAuth module. Currently, only ARQs and LRQs can
be authorized by this module.

First, a most speci�c pre�x is selected according to the destinationInfo �eld of the received request. Then
the request is accepted or rejected according to the matched rules with most speci�c netmask. If no matched
pre�x is found, and the default option is speci�ed, the request is accepted or rejected according to that.
Otherwise it is rejected or passed to next authentication module according to the module requirement.

Format:

prefix=authrule[|authrule|...]

Syntax:

7. Authentication Con�guration 44

<authrule> := <result> <authrule>

<result> := deny | allow
<authrule> := [!]ipv4:<iprule> | [!]alias:<aliasrule>

Where <iprule> can be speci�ed in decimal dot notation or CIDR notation, <aliasrule> is expressed in
regular expression. If the `!' �ag precedes the rule, the sense is inverted.

Example:

555=deny ipv4:10.0.0.0/27|allow ipv4:0/0
5555=allow ipv4:192.168.1.1|deny ipv4:192.168.1.0/255.255.255.0
86=deny !ipv4:172.16.0.0/24
09=deny alias:^188884.*
ALL=allow ipv4:ALL

In this con�guration, all endpoints except from network 10.0.0.0/27 are allow to call pre�x 555 (except
5555). Endpoints from 192.168.1.0/24 are not allowed to call pre�x 5555, except 192.168.1.1. Endpoints
not from 172.16.0.0/24 are denied to call pre�x 86. Endpoints having an alias beginning with 188884 are
not allowed to call pre�x 09. All other situations are allowed.

7.9 Section [RadAuth]

This section de�nes con�guration settings that enable RADIUS authentication based on H.235 CATs (Cisco
Access Tokens) present in RRQ, ARQ RAS requests and Q.931 Setup messages.

• Servers=SERVER1[:AUTH_PORT[:ACCT_PORT[:SECRET]]];SERVER2[:AUTH_PORT[:ACCT_PORT[:SECRET]]];...
Default: N/A RADIUS servers to be used for authentication. The list can contain an arbitrary number
of servers. The order of servers is important, because servers will be queried by the RADIUS module
in the given order. If no port information is provided, port number from DefaultAuthPort will be
used. If no secret is set, the default shared secret from SharedSecret is taken. Servers names can be
IP addresses or DNS names.

Sample Servers lines:
Servers=192.168.1.1
Servers=192.168.1.1:1645
Servers=192.168.1.1:1645:1646:secret1
Servers=radius1.mycompany.com:1812
Servers=radius1.mycompany.com;radius2.mycompany.com
Servers=radius1.mycompany.com:1812:1813:secret1;radius2.mycompany.com:1812:1813:secret2

• LocalInterface=IP_OR_FQDN
Default: N/A Particular local network interface that RADIUS client should use in order to communicate
with RADIUS servers. This parameter can be useful on NAT machines to restrict number of network
interfaces used for RADIUS communication. By default this value is empty and allows RADIUS
requests to be sent on any (best suitable) network interface. If you are not sure what you are doing, it
is better to leave this option unset.

• RadiusPortRange=10000-11000
Default: N/A By default (if this option is not set) RADIUS client allocates ports dynamically as speci�ed
by the operating system. If you want to restrict RADIUS client to use ports from a particular range
only - set this parameter.

7. Authentication Con�guration 45

• DefaultAuthPort=PORT_NO
Default: 1812 Default port number to be used for RADIUS authentication requests (Access-Request
packets), if not overriden by Servers attribute.

• SharedSecret=SECRET
Default: N/A (empty string) Secret used to authenticate this GnuGk (NAS client) to RADIUS server.
It should be a cryptographically strong password. This is the default value used, if no server-speci�c
secret is set in the Servers. If EncryptAllPasswords is enabled, or a KeyFilled variable is de�ned
in this section, the password is in encrypted form and should be created using the addpasswd utility.

• RequestTimeout=TIMEOUT_MS
Default: 2000 (miliseconds) Timeout (miliseconds) for RADIUS server response to a request sent by
GnuGk. If no response is received within this time period, next RADIUS server is queried.

• IdCacheTimeout=TIMEOUT_MS
Default: 9000 (miliseconds) Timeout (miliseconds) for RADIUS request 8-bit identi�ers to be unique.
If all 8-bit identi�er range is exhausted within this period, new client socket (UDP socket) is allocation
by RADIUS module. Let's take the example: we have approximatelly 60 RRQs/sec - after ca. 4
seconds 8-bit identi�ers range gets exhausted - new socket allocated - after next 4 seconds the second
8-bit identi�ers range gets exhauted - third socket allocated - after 9th second identi�ers from the pool
1 are available again - In general, too long timeout - too much resources consumed, too short
timeout - RADIUS server may take incoming packets as duplicated and therefore drop it.

• SocketDeleteTimeout=TIMEOUT_MS
Default: 60000 (miliseconds) - 60 s Timeout for unused RADIUS sockets to be closed. It is used in
conjunction with IdCacheTimeout - additional sockets created during heavy GK load time periods for
serving incoming requests are closed during idle periods.

• RequestRetransmissions=NUMBER
Default: 2 How many times a single RADIUS request is transmissed to every con�gured RADIUS
server (if no response is received). 1 means no retransmission, 2 - single retransmission, Exact
retransmission method is de�ned by RoundRobinServers attribute.

• RoundRobinServers=BOOLEAN
Default: 1 RADIUS requests retransmission method.
If set to 1, RADIUS request is transmitted in the following way (until response is received):

Server #1 Attempt #1, Server #2 Attempt #1, ..., Server #N Attempt #1
...
Server #1 Attempt #RequestRetransmissions, ..., Server #1 Attempt #RequestRetransmissions

If set to 0, the following sequence is preserved:

Server #1 Attempt #1, ..., Server #1 Attempt #RequestRetransmissions
...
Server #N Attempt #1, ..., Server #N Attempt #RequestRetransmissions

• AppendCiscoAttributes=BOOLEAN
Default: 0 If set, Cisco Vendor Speci�c RADIUS attibutes are included in RADIUS requests (h323-
conf-id,h323-call-origin,h323-call-type).

• IncludeTerminalAliases=BOOLEAN
Default: 1 If set, Cisco VSA 'h323-ivr-out' attribute is sent with a list of aliases the endpoint is
registering (RRQ.m_terminalAlias). This attribute is provided in order to provide �ne control over
the list of aliases the endpoint is allowed to register with. Format of this attribute is:

7. Authentication Con�guration 46

Cisco-AV-Pair = "h323-ivr-out=terminal-alias:" alias [,alias] [;]
Example:

Cisco-AV-Pair = "h323-ivr-out=terminal-alias:helpdesk,support,77771;"

• UseDialedNumber=BOOLEAN
Default: 0 Select Called-Station-Id number type between the original one (as dialed by the user) -
UseDialedNumber=1 - and the rewritten one - UseDialedNumber=0.

7.10 Section [RadAliasAuth]

This section de�nes con�guration settings that enable RADIUS authentication based on endpoint aliases
and/or IP adresses present in RRQ RAS requests, ARQ RAS request or Q.931 Setup request. This au-
thentication scheme is useful both for endpoints registered at the gatekeeper (ARQ,RRQ) and calls from
unregistered endpoints (Setup).

• Servers=SERVER1[:AUTH_PORT[:ACCT_PORT[:SECRET]]];SERVER2[:AUTH_PORT[:ACCT_PORT[:SECRET]]];...
Default: N/A RADIUS servers to be used for RAS requests authentication. This list can contain
an arbitrary number of servers. The order of servers is important, because servers will be queried
by the RADIUS module in the given order. If no port information is speci�ed, port number from
DefaultAuthPort will be used. If no secret is set, the default shared secret from SharedSecret is
used. Servers can be IP addresses or DNS names.

Example:
Servers=192.168.3.1:1645;192.168.3.2:1812:1813:mysecret;radius.mycompany.com

• LocalInterface=IP_OR_FQDN
Default: N/A Particular local network interface that RADIUS client should use in order to communicate
with RADIUS servers. This parameter can be useful on NAT machines to restrict number of network
interfaces used for RADIUS communication. By default this value is empty and allows RADIUS
requests to be sent on any (best suitable) network interface. If you are not sure what you are doing, it
is better to leave this option unset.

• RadiusPortRange=10000-11000
Default: N/A By default (if this option is not set) RADIUS client allocates ports dynamically as speci�ed
by the operating system. If you want to restrict RADIUS client to use ports from a particular range
only - set this parameter.

• DefaultAuthPort=PORT_NO
Default: 1812 Default port number to be used for RADIUS authentication requests (Access-Request
packets), if not overriden by Servers attribute.

• SharedSecret=SECRET
Default: N/A (empty string) Secret used to authenticate this GNU GK (NAS client) to RADIUS
server. It should be a cryptographically strong password. This is the default value used, if no server-
speci�c secret is set in the Servers. If EncryptAllPasswords is enabled, or a KeyFilled variable is
de�ned in this section, the password is in encrypted form and should be created using the addpasswd
utility.

• RequestTimeout=TIMEOUT_MS
Default: 2000 (miliseconds) Timeout (miliseconds) for RADIUS server response to a request sent by
GNU GK. If no response is received within this time period, next RADIUS server is queried.

7. Authentication Con�guration 47

• IdCacheTimeout=TIMEOUT_MS
Default: 9000 (miliseconds) Timeout (miliseconds) for RADIUS request 8-bit identi�ers to be unique.
If all 8-bit identi�er range is exhausted within this period, new client socket (UDP socket) is allocation
by RADIUS module. Let's take the example: we have approximatelly 60 RRQs/sec - after ca. 4
seconds 8-bit identi�ers range gets exhausted - new socket allocated - after next 4 seconds the second
8-bit identi�ers range gets exhauted - third socket allocated - after 9th second identi�ers from the pool
1 are available again - In general, too long timeout - too much resources consumed, too short
timeout - RADIUS server may take incoming packets as duplicated and therefore drop it.

• SocketDeleteTimeout=TIMEOUT_MS
Default: 60000 (miliseconds) - 60 s Timeout for unused RADIUS sockets to be closed. It is used in
conjunction with IdCacheTimeout - additional sockets created during heavy GK load time periods for
serving incoming requests are closed during idle periods.

• RequestRetransmissions=NUMBER
Default: 2 How many times a single RADIUS request is transmissed to every con�gured RADIUS
server (if no response is received). 1 means no retransmission, 2 - single retransmission, Exact
retransmission method is de�ned by RoundRobinServers attribute.

• RoundRobinServers=BOOLEAN
Default: 1 RADIUS requests retransmission method.
If set to 1, RADIUS request is transmitted in the following way (until response is received):

Server #1 Attempt #1, Server #2 Attempt #1, ..., Server #N Attempt #1
...
Server #1 Attempt #RequestRetransmissions, ..., Server #1 Attempt #RequestRetransmissions

If set to 0, the following sequence is preserved:

Server #1 Attempt #1, ..., Server #1 Attempt #RequestRetransmissions
...
Server #N Attempt #1, ..., Server #N Attempt #RequestRetransmissions

• AppendCiscoAttributes=BOOLEAN
Default: 1 If set, Cisco Vendor Speci�c RADIUS attibutes are included in RADIUS requests (h323-
conf-id,h323-call-origin,h323-call-type).

• IncludeTerminalAliases=BOOLEAN
Default: 1 If set, Cisco VSA 'h323-ivr-out' attribute is sent with a list of aliases the endpoint is
registering (RRQ.m_terminalAlias). This attribute is provided in order to provide �ne control over
the list of aliases the endpoint is allowed to register with. Format of this attribute is:

Cisco-AV-Pair = "h323-ivr-out=terminal-alias:" alias [,alias] [;]
Example:

Cisco-AV-Pair = "h323-ivr-out=terminal-alias:helpdesk,support,77771;"

• FixedUsername
Default: N/A If this parameter is set, it overwrites a value of User-Name RADIUS attribute for outgoing
RADIUS request. That means every Access-Request will be authenticated as for user FixedUsername.

• FixedPassword
Default: N/A If not set, User-Password is a copy of User-Name. For example, if User-Name is 'john'
then User-Password will also be set to 'john'. Setting this parameter overrides this behavious and
User-Password attribute will be always set to the value of FixedPassword. If EncryptAllPasswords
is enabled, or a KeyFilled variable is de�ned in this section, the password is in encrypted form and
should be created using the addpasswd utility.

8. Accounting Con�guration 48

Example 1:
(Neither FixedUsername nor FixedPassword set)

All endpoints will be authenticated using their alias as the username and the password. That
means, for example, endpoint 'EP1' will be authenticated with the username 'EP1 and the pass-
word 'EP1'.

Example 2:
(FixedUsername not set)
FixedPassword=ppp

All endpoints will be authenticated using their alias and the password 'ppp'.

Example 3:
FixedUsername=ppp
FixedPassword=ppp

All endpoints will be authenticated using the username 'ppp' and the password 'ppp'.

• UseDialedNumber=BOOLEAN
Default: 0 Select Called-Station-Id number type between the original one (as dialed by the user) -
UseDialedNumber=1 - and the rewritten one - UseDialedNumber=0.

8 Accounting Con�guration

The following sections in the con�g �le can be used to con�gure accounting.

8.1 Section [Gatekeeper::Acct]

The section de�nes a list of modules that will be performing accounting. The accounting is for logging
gatekeeper on/o� events and call start/stop/update events. Each accounting module logs received events to
a module speci�c storage. Such storage can be a plain text �le or a RADIUS server and many more. The
con�guration is very similar to the one for gatekeeper authentication (see 7.1 ([Gatekeeper::Auth])).

All CDRs are also sent to the status port and can be used by external applications.

Syntax:

acctmod=actions

<acctmod> := FileAcct | RadAcct | SQLAcct | ...
<actions> := <control>[;<event>,<event>,...]
<control> := optional | required | sufficient | alternative
<event> := start | stop | connect | update | on | off

The event list tells the gatekeeper, which events should trigger logging with the given accounting module (if
an event type is supported by the module):

• start - a call has been started and a Setup message has been received (only available in routed mode),

• connect - a call has been connected (only available in routed mode),

• update - a call is active and the periodic update is performed to re�ect the new call duration. Frequency
of such updates is determined by AcctUpdateInterval variable from 11.1 ([CallTable]) section,

8. Accounting Con�guration 49

• stop - a call has been disconnected (removed from the GK call table),

• on - the gatekeeper has been started,

• off - the gatekeeper has been shut down.

An event logging by a module may results in one of the three result codes: ok, fail, next.

• ok - the event has been logged successfully by this module,

• fail - the module failed to log the event,

• next - the event has not been logged by this module, because the module is not con�gured for/does
not support this event type.

Accounting modules can be stacked to log events by multiple modules or to create failover setups. control
�ag for each module, along with result codes, de�ne what is the �nal status of the event processing by the
whole module stack. If the �nal result is failure, some special actions may take place. Currently, if a call
start event logging fails, the call is disconnected immediatelly. The following control �ags are recognized:

• required - if the module fails to log an event, the �nal status is set to failure and the event is passed
down to any remaining modules,

• optional - the module tries to log an event, but the �nal status is not a�ected by success or failure
(except when the module is last on the list). The event is always passed down to any remaining
modules,

• sufficient - the module determines the �nal status. If an event is logged successfully, no remaining
modules are processed. Otherwise the �nal status is set to failure and the event is passed down to any
remaining modules,

• alternative - if the module logs an event successfully, no remaining modules are processed. Otherwise
the �nal status is not modi�ed and the event is passed down to any remaining modules.

Currently supported accounting modules:

• FileAcct A plain CDR text �le logger. It outputs status line like CDR lines to a speci�ed text �le.
This module supports only stop accounting event. Con�guration settings are read from 8.2 ([FileAcct])
section.

• RadAcct This module performs RADIUS accounting. It supports all event types (start, stop, update,
on, o�). See the section 8.3 ([RadAcct]) for con�guration details.

• SQLAcct This module performs direct SQL accounting. It supports (start, connect, stop, update) event
types. See the section 8.4 ([SQLAcct]) for con�guration details.

• default This is a special pseudo module - it is used to set the �nal status if preceeding modules have
not determined it. The format is as follows:

Syntax:
default=<status>[;<event>,<event>,...]
<status> := accept | fail
<event> := start | stop | update | on | off

The sample con�guration #1 (try to log call start/stop with RADIUS server, and always write a CDR to a
text �le):

8. Accounting Con�guration 50

Example:
RadAcct=optional;start,stop
FileAcct=required

The sample con�guration #2 (try to log call start/stop with RADIUS server, if it fails use a CDR log �le):

Example:
RadAcct=alternative;start,stop
FileAcct=sufficient;stop
default=accept

The default rule is required here to prevent calls from being rejected because of RadAcct start event logging
failure. If RadAcct returns fail return code, it is passed down to FileAcct module. FileAcct module does
not support start events, so it returns next return code. If there were no the default rule, the �nal status
would be failure, because no module has been able to log the event.

The sample con�guration #3 (always log call start and stop events with RADIUS server, if it fails for call
stop event, use a CDR �le to store call info):

Example:
RadAcct=alternative;start,stop
FileAcct=sufficient;stop
default=fail;start

The default rule is optional here. If RadAcct returns fail return code for start event, the code is passed
down to FileAcct module. FileAcct module does not support start events, so it returns next return code.
The default rule ensures, that the call is disconnected if call start event could not has been logged with
RadAcct. But we want to store a CDR in a text �le in case the RADIUS server is down when the call
disconnects, so we can fetch call duration into a billing system later.

8.2 Section [FileAcct]

This accounting module writes CDR lines to a speci�ed text �le. The CDR format can be a standard one
(the same as displayed by the status interface) or a customized one (using parametrized query string).

• DetailFile=FULL_PATH_AND_FILENAME
Default: N/A A full path to the CDR plain text �le. If a �le with the given name already exists, new
CDRs will be appended at the end of the �le.

• StandardCDRFormat=0
Default: 1 Use a CDR format compatible with the status interface CDR format (1) or build a custom
CDR strings from the CDRString parametrized string.

• CDRString=%s|%g|%u|%{Calling-Station-Id}|%{Called-Station-Id}|%d|%c
Default: N/A If StandardCDRFormat is disabled (0) or not speci�ed at all, this paramterized string
instructs the gatekeeper how to build a custom CDRs. Parameters are speci�ed using % character and
can be one letter (like %n) or longer (like %{CallId}). Any remaining characters that are not parameter
names are simply copied to a �nal CDR string. The following parameters are recognized:

8. Accounting Con�guration 51

� %g - gatekeeper name
� %n - call number (not unique after gatekeeper restart)
� %d - call duration (seconds)
� %t - total call duration (from Setup to Release Complete)
� %c - Q.931 disconnect cause (decimal integer)
� %r - who disconnected the call (-1 - unknown, 0 - the gatekeeper, 1 - the caller, 2 - the callee)
� %p - PDD (Post Dial Delay) in seconds
� %s - unique (for this gatekeeper) session identi�er (Acct-Session-Id)
� %u - H.323 ID of the calling party
� %{gkip} - IP address of the gatekeeper
� %{CallId} - H.323 call identi�er (16 hex 8-bit digits)
� %{ConfId} - H.323 conference identi�er (16 hex 8-bit digits)
� %{setup-time} - timestamp string for Q.931 Setup message
� %{alerting-time} - timestamp string for Q.931 Alerting message
� %{connect-time} - timestamp string for a call connected event
� %{disconnect-time} - timestamp string for a call disconnect event
� %{ring-time} - time a remote phone was ringing for (from Alerting till Connect or Release

Complete)
� %{caller-ip} - signaling IP addres of the caller
� %{caller-port} - signaling port of the caller
� %{callee-ip} - signaling IP addres of the called party
� %{callee-port} - signaling port of the called party
� %{src-info} - a colon separated list of source aliases
� %{dest-info} - a colon separated list of destination aliases
� %{Calling-Station-Id} - calling party number
� %{Called-Station-Id} - called party number (rewritten)
� %{Dialed-Number} - dialed number (as received from the calling party)

• TimestampFormat=Cisco
Default: N/A Format of timestamp strings printed in CDR strings. If this setting is not speci�ed, a
global one from the main gatekeeper section is applied.

• Rotate=hourly | daily | weekly | monthly | L... | S...
Default: N/A If set, the CDR �le will be rotated based on this setting. Hourly rotation enables rotation
once per hour, daily - once per day, weekly - once per week and monthly - once per month. An exact
rotation moment is determined by a combination of RotateDay and RotateTime. During rotation, an
existing �le is renamed to CURRENT_FILENAME.YYYYMMDD-HHMMSS, where YYYYMMDD-
HHMMSS is replaced with the current timestamp, and new CDRs are logged to an empty �le.
In addition, rotation per number of CDRs written (L...) and per �le size (S...) is supported. The L
pre�x speci�es a number of CDR lines written, the S pre�x speci�es CDR �le size. k and m su�xes can
be used to spe�cy throusands (kilobytes) and millions (megabytes). See the examples for more details.

Example 1 - no rotation:
[FileAcct]
DetailFile=/var/log/gk/cdr.log

8. Accounting Con�guration 52

Example 2 - rotate every hour (00:45, 01:45, ..., 23:45):
[FileAcct]
DetailFile=/var/log/gk/cdr.log
Rotate=hourly
RotateTime=45

Example 3 - rotate every day at 23:00 (11PM):
[FileAcct]
DetailFile=/var/log/gk/cdr.log
Rotate=daily
RotateTime=23:00

Example 4 - rotate every Sunday at 00:59:
[FileAcct]
DetailFile=/var/log/gk/cdr.log
Rotate=weekly
RotateDay=Sun
RotateTime=00:59

Example 5 - rotate on the last day of each month:
[FileAcct]
DetailFile=/var/log/gk/cdr.log
Rotate=monthly
RotateDay=31
RotateTime=23:00

Example 6 - rotate per every 10000 CDRs:
[FileAcct]
DetailFile=/var/log/gk/cdr.log
Rotate=L10000

Example 7 - rotate per every 10 kilobytes:
[FileAcct]
DetailFile=/var/log/gk/cdr.log
Rotate=S10k

8.3 Section [RadAcct]

This accounting module sends accounting data to a RADIUS server. Module con�guration is almost the
same as for RADIUS authenticators (see 7.9 ([RadAuth]) and 7.10 ([RadAliasAuth]) for more details on the
parameters).

• Servers=SERVER1[:AUTH_PORT:ACCT_PORT[:SECRET]];SERVER2[:AUTH_PORT:ACCT_PORT[:SECRET]];...
Default: N/A RADIUS servers to send accounting data to. If no port information is given, port number
from DefaultAcctPort is be used. If no secret is set, the default shared secret from SharedSecret is
used. Server names could be either IP addresses or DNS names.

8. Accounting Con�guration 53

Sample Servers lines:
Servers=192.168.1.1
Servers=192.168.1.1:1645:1646
Servers=192.168.1.1:1645:1646:secret1
Servers=radius1.mycompany.com:1812:1813
Servers=radius1.mycompany.com;radius2.mycompany.com
Servers=radius1.mycompany.com:1812:1813:secret1;radius2.mycompany.com:1812:1813:secret2

• LocalInterface=IP_OR_FQDN
Default: N/A Particular local network interface that RADIUS client should use in order to communicate
with RADIUS servers.

• RadiusPortRange=10000-11000
Default: N/A By default (if this option is not set) RADIUS client allocates ports dynamically as speci�ed
by the operating system. If you want to restrict RADIUS client to use ports from a particular range
only - set this parameter.

• DefaultAcctPort=PORT_NO
Default: 1813 Default port number to be used for RADIUS accounting requests, if not overriden by
Servers attribute.

• SharedSecret=SECRET
Default: N/A (empty string) A secret used to authenticate this GnuGk (NAS client) to RADIUS
server. It should be a cryptographically strong password. This is the default value used, if no server-
speci�c secret is set in the Servers. If EncryptAllPasswords is enabled, or a KeyFilled variable is
de�ned in this section, the password is in encrypted form and should be created using the addpasswd
utility.

• RequestTimeout=TIMEOUT_MS
Default: 2000 (miliseconds) Timeout (miliseconds) for RADIUS server response to a request sent by
GnuGk. If no response is received within this time period, next RADIUS server is queried.

• IdCacheTimeout=TIMEOUT_MS
Default: 9000 (miliseconds) Timeout (miliseconds) for RADIUS request 8-bit identi�ers to be unique.

• SocketDeleteTimeout=TIMEOUT_MS
Default: 60000 (miliseconds) - 60 s Timeout for unused RADIUS sockets to be closed.

• RequestRetransmissions=NUMBER
Default: 2 How many times a single RADIUS request is transmissed to every con�gured RADIUS
server (if no response is received).

• RoundRobinServers=BOOLEAN
Default: 1 RADIUS requests retransmission method.

• AppendCiscoAttributes=BOOLEAN
Default: 0 If set, Cisco Vendor Speci�c RADIUS attibutes are included in RADIUS requests (h323-
conf-id,h323-call-origin,h323-call-type).

• TimestampFormat=ISO8601
Default: N/A Format of timestamp strings sent in RADIUS attributes. If this setting is not speci�ed,
a global one from the main gatekeeper section is applied.

• UseDialedNumber=BOOLEAN
Default: 0 Select Called-Station-Id number type between the original one (as dialed by the user) -
UseDialedNumber=1 - and the rewritten one - UseDialedNumber=0.

8. Accounting Con�guration 54

8.4 Section [SQLAcct]

This accounting module stores accounting information directly to an SQL database. Many con�guration
settings are common with other SQL modules.

• Driver=MySQL | PostgreSQL
Default: N/A SQL database driver to use. Currently, MySQL and PostgreSQL drivers are implemented.

• Host=DNS[:PORT] | IP[:PORT]
Default: localhost SQL server host address. Can be in the form of DNS[:PORT] or IP[:PORT]. Like
sql.mycompany.com or sql.mycompany.com:3306 or 192.168.3.100.

• Database=billing
Default: billing The database name to connect to.

• Username=gnugk
The username used to connect to the database.

• Password=secret
The password used to connect to the database. If the password is not speci�ed, a database connection
attempt without any password will be made. If EncryptAllPasswords is enabled, or a KeyFilled
variable is de�ned in this section, the password is in an encrypted form and should be created using
the addpasswd utility.

• StartQuery=INSERT ...
Default: N/A De�nes SQL query used to insert a new call record to the database. The query is
parametrized - that means parameter replacement is made before each query is executed. Parameter
placeholders are denoted by % character and can be one letter (like %u) or whole strings (like %{src-
info}). Specify %% to embed a percent character inside the query string (like %%). For SQLAcct the
following parameters are de�ned:

� %g - gatekeeper name
� %n - call number (not unique after gatekeeper restart)
� %d - call duration (seconds)
� %t - total call duration (from Setup to Release Complete)
� %c - Q.931 disconnect cause (hexadecimal integer)
� %r - who disconnected the call (-1 - unknown, 0 - the gatekeeper, 1 - the caller, 2 - the callee)
� %p - PDD (Post Dial Delay) in seconds
� %s - unique (for this gatekeeper) call (Acct-Session-Id)
� %u - H.323 ID of the calling party
� %{gkip} - IP address of the gatekeeper
� %{CallId} - H.323 call identi�er (16 hex 8-bit digits)
� %{ConfId} - H.323 conference identi�er (16 hex 8-bit digits)
� %{setup-time} - timestamp string for Q.931 Setup message
� %{alerting-time} - timestamp string for Q.931 Alerting message
� %{connect-time} - timestamp string for a call connected event
� %{disconnect-time} - timestamp string for a call disconnect event
� %{ring-time} - time a remote phone was ringing for (from Alerting till Connect or Release

Complete)

8. Accounting Con�guration 55

� %{caller-ip} - signaling IP addres of the caller
� %{caller-port} - signaling port of the caller
� %{callee-ip} - signaling IP addres of the called party
� %{callee-port} - signaling port of the called party
� %{src-info} - a colon separated list of source aliases
� %{dest-info} - a colon separated list of destination aliases
� %{Calling-Station-Id} - calling party number
� %{Called-Station-Id} - called party number (rewritten Dialed-Number)
� %{Dialed-Number} - dialed number (as received from the calling party)

Sample query string:

INSERT INTO call (gkname, sessid, username, calling, called)
VALUES ('%g', '%s', '%u', '%{Calling-Station-Id}', '%{Called-Station-Id}')

• StartQueryAlt=INSERT ...
Default: N/A De�nes SQL query used to insert a new call record to the database in case the StartQuery
failed for some reason (the call already exists, for example). The syntax and parameters are the same
as for StartQuery.

• UpdateQuery=UPDATE ...
Default: N/A De�nes SQL query used to update call record in the database with the current call state.
The syntax and parameters are the same as for StartQuery.
Sample query string:

UPDATE call SET duration = %d WHERE gkname = '%g' AND sessid = '%s'

• StopQuery=UPDATE ...
Default: N/A De�nes SQL query used to update call record in the database when the call is �nished
(disconnected). The syntax and parameters are the same as for StartQuery.
Sample query string:

UPDATE call SET duration = %d, dtime = '%{disconnect-time}' WHERE gkname = '%g' AND sessid = '%s'

• StopQueryAlt=INSERT ...
Default: N/A De�nes SQL query used to update call record in the database when the call is �nished
(disconnected) in case the regular StopQuery failed (because the call record does not yet exist, for
example). The syntax and parameters are the same as for StartQuery.
Sample query string:

INSERT INTO call (gkname, sessid, username, calling, called, duration)
VALUES ('%g', '%s', '%u', '%{Calling-Station-Id}', '%{Called-Station-Id}', %d)

• TimestampFormat=MySQL
Default: N/A Format of timestamp strings used in queries. If this setting is not speci�ed, a global one
from the main gatekeeper section is applied.

• MinPoolSize=5
Default: 1 Number of concurrent SQL connections in the pool. The �rst available connection in the
pool is used to store accounting data.

9. Neighbor Con�guration 56

9 Neighbor Con�guration

9.1 Section [RasSrv::Neighbors]

If the destination of an ARQ is unknown, the gatekeeper sends LRQs to its neighbors to ask if they have
the destination endpoint. A neighbor is selected if one of its pre�xes matches the destination or it has �*�
pre�x. More than one pre�x can be speci�ed. You can use special characters �.� and �!� to do wildcard
matching and disable a speci�c pre�x.

Conversely, the gatekeeper will only reply to LRQs sent from neighbors de�ned in this section. If you
specify an empty pre�x, no LRQ will be sent to that neighbor, but the gatekeeper will accept LRQs from
it. By the empty pre�x it is meant a single semicolon appended to the neighbor entry. Example:

GK1=192.168.0.5;

If you skip the semicolon, LRQs will be always sent to this neighbor.

The password �eld is used to authenticate LRQs from that neighbor. See section 7.1 ([Gatekeeper::Auth])
for details.

Neighbor handling has changed signi�cantly from version 2.0 to version 2.2. Neighbors can be speci�ed now
in two ways - the old one and the new one.

Entry in the old format:
GKID=ip[:port;prefixes;password;dynamic]

Example:
GK1=192.168.0.5;*
GK2=10.0.1.1:1719;035,036;gk2
GK3=gk.citron.com.tw;;gk3;1

Entry in the new format:
GKID="GnuGK" | "CiscoGK" | "ClarentGK" | "GlonetGK"

Example:
[RasSrv::Neighbors]
GK1=CiscoGK
GK2=GnuGK

[Neighbor::GK1]
GatekeeperIdentifier=GK1
Host=192.168.1.1
SendPrefixes=02
AcceptPrefixes=*
ForwardLRQ=always

[Neighbor::GK2]
GatekeeperIdentifier=GK2
Host=192.168.1.2
SendPrefixes=03,0048
AcceptPrefixes=0049,001
ForwardHopCount=2

9. Neighbor Con�guration 57

ForwardLRQ=depends

The new format speci�es in [RasSrv::Neighbors] section only gatekeeper types and con�guration for each
neighbor is placed in a separate section.

9.2 Section [RasSrv::LRQFeatures]

De�nes some features of LRQ and LCF.

• NeighborTimeout=1
Default: 2 Timeout value in seconds to wait responses from neighbors. If no response from all neighbors
after timeout, the gatekeeper will reply an ARJ to the endpoint sending the ARQ.

• ForwardHopCount=2
Default: N/A If the gatekeeper receives an LRQ that the destination is either unknown, it may forward
this message to its neighbors. When the gatekeeper receives an LRQ and decides that the message
should be forwarded on to another gatekeeeper, it �rst decrements hopCount �eld of the LRQ. If
hopCount has reached 0, the gatekeeper shall not forward the message. This options de�nes the
number of gatekeepers through which an LRQ may propagate. Note it only a�ects the sender of LRQ,
not the forwarder. This setting can be overriden with con�guration of a particular neighbor.

• AlwaysForwardLRQ=1
Default: 0 Force the gatekeeper to forward an LRQ even if there is no hopCount in the LRQ. To
avoid LRQ loops, you should use this option very carefully. This option is used only for an old-style
(2.0) neighbor con�guration, the new one reads the settings from a neighbor-speci�c con�g section.

• AcceptForwardedLRQ=1
Default: 1 Whether to accept an LRQ forwarded from neighbors. This setting can be overriden with
con�guration of a particular neighbor.

• IncludeDestinationInfoInLCF=0
Default: 1 The gatekeeper replies LCFs containing destinationInfo and destinationType �elds,
the aliases and terminal type of the destination endpoint. The neighbor gatekeeper can then save
the information to suppress later LRQs. However, some vendors' gatekeepers misuse the information,
thus result in interoperability problems. Only turn o� this option if you encounter problems upon
communicating with a third-party gatekeeper.

• ForwardResponse=0
Default: 0 If the gatekeeper forwards received LRQ message it can decide either to receive the LCF
response or to let it travel back directly to the LRQ origintator. Set this option to 1, if the gatekeeper
needs to receive LCF messages for forwarded LRQs. This setting can be overriden with con�guration
of a particular neighbor.

• ForwardLRQ=always | never | depends
Default: depends This settings determines whether the received LRQ should be forwarded or not.
always forwards LRQ unconditionally, never blocks LRQ forwarding, depends tells the gatekeeper to
forward LRQ only if its hop count is greater than 1. This setting can be overriden with con�guration
of a particular neighbor.

9. Neighbor Con�guration 58

9.2.1 Section [Neighbor::...]

Sections starting with [Neighbor:: are for neighbor speci�c con�guration.

• GatekeeperIdentifier=GKID
Default: N/A Gatekeeper identi�er for this neighbor. If this options is not speci�ed, the identi�er is
taken from the second part of this Neighbor:: section name.

• Host=192.168.1.1
Default: N/A An IP address for this neighbor.

• Password=secret
Default: N/A A password to be used to validate crypto tokens received from incoming LRQs. It is
not yet implemented.

• Dynamic=0
Default: 0 1 means that the IP address for this neighbor can change.

• SendPrefixes=004,002:=1,001:=2
Default: N/A A list of pre�xes that this neighbor expects LRQs to receive for. If '*' is speci�ed, LRQs
will always be sent to this neighbor. A priority can be given to each pre�x for each neighbor (using :=
syntax), so in case of multiple LCF received from multiple neighbor, the one with the highest priority
will be selected to route the call. One can also direct the gatekeeper to send LRQ to this neighbor
based on an alias type:
SendPre�xes=h323_ID,dialedDigits,001

• AcceptPrefixes=*
Default: * A list of pre�xes that the gatekeeper will accept in LRQs received from this neighbor. If
'*' is speci�ed, all LRQs will be accepted from this neighbor. One can also direct the gatekeeper to
accept LRQ from this neighbor based on an alias type:
AcceptPre�xes=dialedDigits

• ForwardHopCount=2
Default: N/A If the gatekeeper receives an LRQ that the destination is either unknown, it may forward
this message to its neighbors. When the gatekeeper receives an LRQ and decides that the message
should be forwarded on to another gatekeeeper, it �rst decrements hopCount �eld of the LRQ. If
hopCount has reached 0, the gatekeeper shall not forward the message. This options de�nes the
number of gatekeepers through which an LRQ may propagate. Note it only a�ects the sender of LRQ,
not the forwarder.

• AcceptForwardedLRQ=1
Default: 1 Whether to accept an LRQ forwarded from this neighbor.

• ForwardResponse=0
Default: 0 If the gatekeeper forwards received LRQ message it can decide either to receive the LCF
response or to let it travel back directly to the LRQ origintator. Set this option to 1, if the gatekeeper
needs to receive LCF messages for forwarded LRQs.

• ForwardLRQ=always | never | depends
Default: depends This settings determines whether the received LRQ should be forwarded or not.
always forwards LRQ unconditionally, never blocks LRQ forwarding, depends tells the gatekeeper to
forward LRQ only if its hop count is greater than 1. This setting can be overriden with con�guration
of a particular neighbor.

10. Per-Endpoint Con�guration 59

10 Per-Endpoint Con�guration

In addition to the standard con�guration �le options, per-endpoint con�guration settings can be speci�ed in
the con�g �le. The syntax is as follows:

10.1 Section [EP::...]
[EP::ALIAS]
Key Name=Value String

ALIAS is replaced with an actual alias for an endpoint the settings should apply to. Currently, the following
options are recognized:

• Capacity=10
Default: -1 Call capacity for an endpoint. No more than Capacity concurrent calls will be sent to
this endpoint. In case of gateways, if more than one gateway matches a dialed number, a call will be
sent to the �rst available gateway (that has available capacity).

• GatewayPriority=1
Default: 1 Apply only to gateways. Allow priority based routing in case, when more than one gateway
matches a dialed number. The smaller value the higher priority is assigned to a gateway. A call is
routed to the �rst available gateway (that has available capacity) with the highest priority (the smallest
GatewayPriority values).

• GatewayPrefixes=0048,0049,0044
Default: N/A Additional pre�xes for this gateway. Apply only to gateways. Special characters . and
! can be used here to match any digit and disable the pre�x.

Example:

[RasSrv::PermanentEndpoints]
192.168.1.1=gw1;48
192.168.1.2=gw2;48,!4850,!4860,!4869,!4888

[EP::gw1]
Capacity=60
GatewayPriority=1

[EP::gw2]
Capacity=30
GatewayPriority=2

In this example, calls will be sent to the gateway gw1 until its capacity is fully utilized (60 concurrent calls)
and then to the gateway gw2.

11 Advanced Con�guration

11.1 Section [CallTable]

• GenerateNBCDR=0
Default: 1 Generate CDRs for calls from neighbor zones. The IP and endpoint ID of the calling party
is printed as empty. This is usually used for debug purpose.

11. Advanced Con�guration 60

• GenerateUCCDR=0
Default: 0 Generate CDRs for calls that are unconnected. This is usually used for debug purpose.
Note a call is considered unconnected only if the gatekeeper uses routed mode and a Q.931 Connect
message is not received by the gatekeeper. In direct mode, a call is always considered connected.

• DefaultCallDurationLimit=3600
Default: 0 Default maximum call duration limit (seconds). Set it to 0 to disable this feature and not
limit calls duration.

• AcctUpdateInterval=60
Default: 0 A time interval (seconds) for accounting updates to be logged for each call in progress. The
exact details of the accounting updates depend on accounting logger modules selected (see section 8.1
([Gatekeeper::Acct])). In general, the accounting update is to provide backend services with increment-
ing call duration for connected calls. The default value 0 tells the gatkeeper to not send accounting
updates at all. Please note that setting short periods may decrease GK performance.

• TimestampFormat=Cisco
Default: RFC822 Format of timestamp strings printed inside CDRs.

• IRRFrequency=60
Default: 120 Set the irrFrequency in ACF messages. 0 turns it o�.

• IRRCheck=TRUE
Default: FALSE Check if both endpoints in a call send the requested IRRs. A call will be treminated
if one of the endpoints didn't send an IRR after 2 * irrFrequency.

11.2 Section [Endpoint]

The gatekeeper can work as an endpoint by registering with another gatekeeper. With this feature, you can
easily build gatekeeper hierarchies. The section de�nes the endpoint features for the gatekeeper.

• Gatekeeper=10.0.1.1
Default: no De�ne a parent gatekeeper for the endpoint(gatekeeper) to register with. Don't try to
register with yourself, unless you want to be confusing. To disable this feature, set the �eld to be no.

• Type=Gateway
Default: Gateway De�ne the terminal type for the endpoint. The valid values are Gateway or Terminal.

• Vendor=Cisco | GnuGk | Generic
Default: GnuGk Choose parent gatekeeper type to enable vendor speci�c extensions.

• H323ID=CitronProxy
Default: <Name> Specify the H.323 ID aliases for the endpoint. Multiple aliases can be separated by
comma.

• E164=18888600000,18888700000
Default: N/A De�ne the E.164 (dialedDigits) aliases for the endpoint. Multiple aliases can be separated
by comma.

• Password=123456
Default: N/A Specify a password to be sent to the parent gatekeeper. All RAS requests will contain
the password in the cryptoTokens �eld (MD5 & HMAC-SHA1-96) and the tokens �eld (CAT). To
send RAS requests without both cryptoTokens and tokens �elds, set the password to be empty. If
EncryptAllPasswords is enabled, or a KeyFilled variable is de�ned in this section, the password is
in encrypted form and should be created using the addpasswd utility.

11. Advanced Con�guration 61

Besides, the password is also used in LRQs sent to neighbor gatekeepers.

• Prefix=188886,188887
Default: N/A Register the speci�ed pre�xes with the parent gatekeeper. Only takes e�ect when the
Type is Gateway.

• TimeToLive=900
Default: 60 Suggest a time-to-live value in seconds for the registration. Note that the real time-to-live
timer is assigned by the parent gatekeeper in the RCF replied to the RRQ.

• RRQRetryInterval=10
Default: 3 De�ne a retry interval in seconds for resending an RRQ if no response is received from the
parent gatekeeper. This interval is doubled with each failure, up to a maximum RRQRetryInterval *
128 timeout.

• ARQTimeout=2
Default: 2 De�ne the timeout value in second for ARQs.

• UnregisterOnReload=1
Default: 0 De�nes whether the child gatekeeper unregisters and re-registers with it's parent when
receiving a Reload command.

• NATRetryInterval=60
Default: 60 How long to wait before trying to reconnect TCP NAT signalling socket (seconds). This
can happen when either the connection cannot be established or it has been broken.

• NATKeepaliveInterval=86400
Default: 86400 De�ne how often the TCP NAT signalling connection with a parent gatekeeper is
refreshed. As NAT boxes usually keep TCP mappings for a de�nite time only, it is good to set this
to some value a bit shorter than NAT box mapping timeout. Refreshing is done by sending a special
Q.931 IncomingCallProceeding message. If you NAT performs TCP port translation, you may need to
set it to a values as short as 60 seconds.

• Discovery=0
Default: 1 Decide whether to discover the parent gatekeeper by sending GRQ �rst.

• UseAlternateGK=0
Default: 1 Enable alternate gatekeepers feature. If GRJ/GCF/RFC messages received from a parent
gatekeeper contain a list of alternate gatekeepers, this information is stored and can be used to reregister
with another gatekeeper in case of any failure. If you don't want to use this feature, set this variable
to 0.

• GatekeeperIdentifier=ParentGK
Default: Not set De�ne it if you want to accept only such parent gatekeepers that match this gate-
keeper identi�er. Useful with GRQ discovery and can prevent an accidental gatekeeper match. Do not
set this variable, if you do not care about gatekeeper identi�ers or you use alternate gatekeepers that
can have di�erent gatekeeper indenti�ers set.

• EndpointIdentifier=OpenH323GK
Default: Not set Set this if you want to use a speci�c endpoint identi�er for this child gatekeeper.
If this option is not set (default), the identi�er is assigned by a parent gatekeeper in a GCF/RCF
message.

11. Advanced Con�guration 62

11.3 Section [CTI::Agents]

This section allows the con�guration of a so called virtual queues to allow inbound call distribution by an
external application via the status port. A virtual queue has an H.323 alias that can be called like an
endpoint.

Upon arrival of an ARQ on a virtual queue, the gatekeeper signals a RouteRequest on the status port and
waits for an external application to respond with either a RouteReject (then the ARQ will be rejected) or
with RouteToAlias/RouteToGateway which leads to the ARQ being rewritten so the call will be routed to
the alias (eg. call center agent) speci�ed by the external application.

If no answer is received after a timeout period, the call is terminated.

You can specify virtual queues in three ways:

• exact alias name - a list of aliases is given. If an ARQ destination alias matches one these names,
the virtual queue is activated,

• prefix - a list of pre�xes is given. If an ARQ destination alias starts with one these pre�xes, the
virtual queue is activated,

• regular expression - a regular expression is given. If an ARQ destination alias matches the expres-
sion, the virtual queue is activated.

See the monitoring section for details on the messages and responses.

• VirtualQueueAliases
Default: none This de�nes a list of H.323 aliases for the virtual queues (used with the vqueue Rout-
ingPolicy).

Example:
VirtualQueueAliases=sales,support

• VirtualQueuePrefixes
Default: none This de�nes a list of pre�xes for the virtual queues (used with the vqueue RoutingPolicy).

Example:
VirtualQueuePrefixes=001215,1215

• VirtualQueueRegex
Default: none This de�nes a regular expression for the virtual queues (used with the vqueue Routing-
Policy).

Example (numbers starting with 001215 or 1215):
VirtualQueueRegex=�(001|1)215[0-9]*$

• RequestTimeout
Default: 10 Timeout in seconds for the external application to answer the RouteRequest. If no answer
is received during this time an ARJ will be sent to the caller.

11. Advanced Con�guration 63

11.4 Section [SQLCon�g]

Load gatekeeper settings from an SQL database (in addition to settings read from the con-
�g �le). A generic ConfigQuery can be used to read almost all setting from the database
and/or one of [RasSrv::RewriteE164], [RasSrv::PermanentEndpoints], [RasSrv::Neighbors],
[RasSrv::GWPrefixes] queries can be used to load particular settings. Entries read from the SQL database
take precedence over settings found in the con�g �le.

• Driver=MySQL | PostgreSQL
Default: N/A SQL database driver to use. Currently, MySQL and PostgreSQL drivers are implemented.

• Host=DNS[:PORT] | IP[:PORT]
Default: localhost SQL server host address. Can be in the form of DNS[:PORT] or IP[:PORT]. Like
sql.mycompany.com or sql.mycompany.com:3306 or 192.168.3.100.

• Database=billing
Default: billing The database name to connect to.

• Username=gnugk
The username used to connect to the database.

• Password=secret
The password used to connect to the database. If the password is not speci�ed, a database connection
attempt without any password will be made. If EncryptAllPasswords is enabled, or a KeyFilled
variable is de�ned in this section, the password is in encrypted form and should be created using the
addpasswd utility.

• ConfigQuery=SELECT ...
Default: N/A De�ne an SQL query used to read gatekeeper settings from the database. The query
is parametrized - that means parameter replacement occurs before the query is executed. Parameter
placeholders are denoted by %1, %2, ... strings. Specify %% to embed a percent character before a
digit into string (like%%1), specify%{1} to allow expansion inside complex expressions like%{1}123.
For ConfigQuery only one parameter is de�ned:

� %1 - the gatekeeper identi�er

It is expected that the query returns zero or more rows of data, with each row consisting of three
columns:

� column at index 0 - con�g section name
� column at index 1 - con�g key (option name)
� column at index 2 - con�g value (option value)

Sample query strings:

ConfigQuery=SELECT secname, seckey, secval FROM sqlconfig WHERE gk = '%1'
ConfigQuery=SELECT '[RasSrv::RRQAuth]', alias, rule FROM rrqauth WHERE gk = '%1'

• RewriteE164Query=SELECT ...
Default: N/A De�ne an SQL query used to retrieve from the database rewrite rules for
[RasSrv::RewriteE164] section. The query is parametrized - that means parameter replacement
occurs before each query is executed. Parameter placeholders are denoted by %1, %2, ... strings.
Specify %% to embed a percent character before a digit into string (like %%1), specify %{1} to allow
expansion inside complex expressions like %{1}123. For RewriteE164Query only one parameter is
de�ned:

11. Advanced Con�guration 64

� %1 - the gatekeeper identi�er

It is expected that the query returns zero or more rows of data, with each row consisting of two columns:

� column at index 0 - rewrite rule key
� column at index 1 - rewrite rule value

Sample query strings:

RewriteE164Query=SELECT rkey, rvalue FROM rewriterule WHERE gk = '%1'

• NeighborsQuery=SELECT ...
Default: N/A De�ne an SQL query used to retrieve from the database neighbor entries for
[RasSrv::Neighbors] section . The query is parametrized - that means parameter replacement occurs
before each query is executed. Parameter placeholders are denoted by%1, %2, ... strings. Specify %%
to embed a percent character before a digit into string (like %%1), specify %{1} to allow expansion
inside complex expressions like %{1}123. For NeighborsQuery one parameter is de�ned:

� %1 - the gatekeeper identi�er

It is expected that the query returns zero or more rows of data, with each row consisting of six columns:

� column at index 0 - neighbor name (ideniti�er)
� column at index 1 - neighbor IP address
� column at index 2 - neighbor port number
� column at index 3 - optional pre�xes (comma separated)
� column at index 4 - optional password
� column at index 5 - optional dynamic IP �ag

Sample query strings:

NeighborsQuery=SELECT nid, nip, nport, npfx, NULL, 0 FROM neighbor WHERE gk = '%1'

• PermanentEndpointsQuery=SELECT ...
Default: N/A De�ne an SQL query used to retrieve permanent endpoints from the database for
[RasSrv::PermanentEndpoints] section . The query is parametrized - that means parameter re-
placement occurs before each query is executed. Parameter placeholders are denoted by %1, %2, ...
strings. Specify %% to embed a percent character before a digit into string (like %%1), specify %{1}
to allow expansion inside complex expressions like %{1}123. For PermanentEndpointsQuery only one
parameter is de�ned:

� %1 - the gatekeeper identi�er

It is expected that the query returns zero or more rows of data, with each row consisting of four
columns:

� column at index 0 - permanent endpoint IP address
� column at index 1 - permanent endpoint port number
� column at index 2 - permanent endpoint alias
� column at index 3 - optional permanent endpoint pre�xes (comma separated)

Sample query strings:

PermanentEndpointsQuery=SELECT peip, 1720, pealias, NULL FROM permanentep WHERE gk = '%1'

12. Monitoring the Gatekeeper 65

• GWPrefixesQuery=SELECT ...
Default: N/A De�ne an SQL query used to retrieve gateway pre�xes from the database for
[RasSrv::GWPrefixes] section . The query is parametrized - that means parameter replacement
is made before each query is executed. Parameter placeholders are denoted by %1, %2, ... strings.
Specify %% to embed a percent character before a digit into string (like %%1), specify %{1} to allow
expansion inside complex expressions like %{1}123. For GWPrefixesQuery only one parameter is
de�ned:

� %1 - the gatekeeper identi�er

It is expected that the query returns zero or more rows of data, with each row consisting of two columns:

� column at index 0 - gateway alias
� column at index 1 - gateway pre�xes (comma separated)

Sample query strings:

GWPrefixesQuery=SELECT gwalias, gwpfx FROM gwprefix WHERE gk = '%1'

12 Monitoring the Gatekeeper

12.1 Status Port

The status port is the external interface for monitoring and controlling the gatekeeper. The gatekeeper will
send out messages about ongoing calls to all connected clients and it can receive commands via this interface.

The messages sent by the gatekeeper to the status port are groupped into three output trace levels:

• Level 0

Reload noti�cations and direct replies to entered commands.

• Level 1

Reload noti�cations, direct replies to entered commands, CDRs and Route Requests.

• Level 2

Output everything (reload noti�cations, direct replies to entered commands, CDRs, Route
Requests, RAS, ...). This is the default output level.

The client connected to the status port can choose the output level it is interested in.

The interface is a simple TCP port (default: 7000), you can connect to with telnet or another client. One
example of a di�erent client is the Java GUI, aka GkGUI. Another example is the Automatic Call Distribution
application, aka GnuGk ACD.

12.1.1 Application Areas

What you do with the powers of the Status Interface is up to you, but here are a few ideas:

• Call Monitoring

• Monitoring the registered endpoints

• Graphical User Interface

12. Monitoring the Gatekeeper 66

See GkGUI.

• Call Routing

See GnuGk ACD.

• Billing Applications

Analyse the CDR messages and forward them to a billing application.

• Interfacing external extensions

If you don't want to publish the source code to additinal features, just publish the core
functionality and interface to it through the status interface and keep the external part
private.

12.1.2 Examples

Suppose you are just interested in the CDRs (call details records) and want to process them as a batch at
regular intervals.

Here is a simple Perl script (gnugk_cdr.pl) that starts the gatekeeper and also forks a very simple client
for the Status Interface and writes just the CDRs into a log�le. You'll have to modify it a little to �t your
needs.

#!/usr/bin/perl
sample program that demonstrates how to write the CDRs to a log file
use strict;
use IO::Socket;
use IO::Handle;

my $logfile = "/home/jan/cdr.log"; # CHANGE THIS
my $gk_host = "localhost";
my $gk_port = 7000;
my $gk_pid;

if ($gk_pid = fork()) {
parent will listen to gatekeeper status
sleep(1); # wait for gk to start
my $sock = IO::Socket::INET->new(PeerAddr => $gk_host, PeerPort => $gk_port, Proto => 'tcp');
if (!defined $sock) {

die "Can't connect to gatekeeper at $gk_host:$gk_port";
}
$SIG{HUP} = sub { kill 1, $gk_pid; }; # pass HUP to gatekeeper
$SIG{INT} = sub { close (CDRFILE); kill 2, $gk_pid; }; # close file when terminated

open (CDRFILE, ">>$logfile");
CDRFILE->autoflush(1); # don't buffer output
while (!$sock->eof()) {

my $msg = $sock->getline();
$msg = (split(/;/, $msg))[0]; # remove junk at end of line
my $msgtype = (split(/\|/, $msg))[0];
if ($msgtype eq "CDR") {

12. Monitoring the Gatekeeper 67

print CDRFILE "$msg\n";
}

}
close (CDRFILE);

} else {
child starts gatekeeper
exec("gnugk");

}

Keep in mind that this is just an example to show the usage of the status port. You can use the FileAcct
module to log CDRs in a production system.

12.1.3 GUI for the Gatekeeper

There are several Graphical User Interface (GUI) frontends for the gatekeeper.

• Java GUIDeveloped by Jan Willamowius. You can monitor the registrations and calls that go through
the gatekeeper. A right-click on a button gives you a popup menu for that endpoint.
This GUI works with Java 1.0 built into most web browsers. For security reasons the GUI must be
run as a standalone application or served by a web server on the same IP number as the gatekeeper
(you cannot run it as an applet via a local �le).
The program is available at GnuGk Java GUI <http://www.gnugk.org/h323gui.html>

• GkGUIA new standalone Java program developed by Citron Network Inc. <http://www.citron.com.
tw/> It requires Java 1.4. New features include:

� Monitor multiple gatekeepers simultaneously.
� Two view modes: Button List and Tree List.
� Call Detail Record(CDR) and statistics.
� GK Status Log.
� Di�erent colors for di�erent endpoint types.
� Modify gatekeeper con�guration.
� Forcedly unregister endpoints.
� Save and print status log and CDR.

The GkGUI is released under GNU General Public License, available at GnuGk Development <http:
//www.gnugk.org/h323develop.html#java>

12.2 Commands (Reference)

This section lists all commands that you can isue to the status port (manually or with an external applica-
tion). All commands are case-insensitive. But some parameters may be case-sensitive.

The command help or h will show you a list of all available commands.

• Reload Reload the con�guration.

• Version, v Show the version and OS information of the gatekeeper.

• Statistics, s Show the statistics information of the gatekeeper.

12. Monitoring the Gatekeeper 68

Example:
Statistics
-- Endpoint Statistics --
Total Endpoints: 21 Terminals: 17 Gateways: 4 NATed: 2
Cached Endpoints: 1 Terminals: 1 Gateways: 0
-- Call Statistics --
Current Calls: 1 Active: 1 From Neighbor: 0 From Parent: 0
Total Calls: 1539 Successful: 1076 From Neighbor: 60 From Parent: 5
Startup: Fri, 21 Jun 2002 10:50:22 +0800 Running: 11 days 04:22:59
;

• PrintAllRegistrations, r, ? Show all registered endpoints.

Format:
AllRegistrations
RCF|IP:Port|Aliases|Terminal_Type|EndpointID
...
Number of Endpoints: n
;

Example:
AllRegistrations
RCF|10.1.1.10:1720|800:dialedDigits=Wei:h323_ID|terminal|1289_endp
RCF|10.0.1.43:1720|613:dialedDigits=Jacky Tsai:h323_ID|terminal|1328_endp
RCF|10.0.1.55:1720|705:dialedDigits=Sherry Liu:h323_ID|terminal|1333_endp
Number of Endpoints: 3
;

• PrintAllRegistrationsVerbose, rv, ?? Show details of all registered endpoints.

Format:
AllRegistrations
RCF|IP:Port|Aliases|Terminal_Type|EndpointID
Registration_Time C(Active_Call/Connected_Call/Total_Call) <r>
[Prefixes: ##] (gateway only)
...
Number of Endpoints: n
;

Example:
AllRegistrations
RCF|10.0.1.8:1720|Accel-GW2:h323_ID|gateway|1322_endp
Wed, 26 Jun 2002 16:40:03 +0800 C(1/5/33) <1>
Prefixes: 09,002
RCF|10.1.1.10:1720|800:dialedDigits=Wei:h323_ID|terminal|1289_endp
Wed, 26 Jun 2002 16:40:55 +0800 C(0/32/39) <1>
RCF|10.0.1.66:1720|716:dialedDigits=Vicky:h323_ID|terminal|1425_endp
Wed, 26 Jun 2002 16:40:58 +0800 C(1/47/53) <1>
Number of Endpoints: 2
;

• PrintCurrentCalls, c, ! Show all current calls using the same ACF syntax as in call establishment.

Format:

12. Monitoring the Gatekeeper 69

CurrentCalls
Call No. # | CallID | Call_Duration | Left_Time
Dialed_Number
ACF|Caller_IP:Port|Caller_EPID|CRV|DestinationInfo|SrcInfo|IsAnswered;
ACF|Callee_IP:Port|Callee_EPID|CRV|DestinationInfo|SrcInfo|IsAnswered;
...
Number of Calls: Current_Call Active: Active_Call From Neighbor: Call_From_Neighbor \
From Parent: Call_From_Parent
;

Example:
CurrentCalls
Call No. 29 | CallID bd c6 17 ff aa ea 18 10 85 95 44 45 53 54 77 77 | 109 | 491
Dial 0953378875:dialedDigits
ACF|10.0.1.49:1720|4048_CGK1|25263|frank:h323_ID|gunter:h323_ID|false;
ACF|10.1.1.1:1720|4037_CGK1|25263|gunter:h323_ID|frank:h323_ID|true;
Call No. 30 | CallID 70 0e dd c0 9a cf 11 5e 00 01 00 05 5d f9 28 4d | 37 | 563
Dial 0938736860:dialedDigits
ACF|10.0.1.48:1032|4041_CGK1|11896|sue:h323_ID|peter:h323_ID|false;
ACF|10.1.1.1:1720|4037_CGK1|11896|peter:h323_ID|sue:h323_ID|true;
Number of Calls: 2 Active: 2 From Neighbor: 0 From Parent: 0
;

• PrintCurrentCallsVerbose, cv, !! Show details of all current calls.

Format:
CurrentCalls
Call No. # | CallID | Call_Duration | Left_Time
Dialed_Number
ACF|Caller_IP:Port|Caller_EPID|CRV|DestinationInfo|SrcInfo|IsAnswered;
ACF|Callee_IP:Port|Callee_EPID|CRV|DestinationInfo|SrcInfo|IsAnswered;
Caller_Aliases|Callee_Aliases|Bandwidth|Connected_Time <r>
...
Number of Calls: Current_Call Active: Active_Call From NB: Call_From_Neighbor
;

Example:
CurrentCalls
Call No. 48 | CallID 7d 5a f1 0a ad ea 18 10 89 16 00 50 fc 3f 0c f5 | 30 | 570
Dial 0225067272:dialedDigits
ACF|10.0.1.200:1720|1448_endp|19618|frank:h323_ID|gunter:h323_ID|false;
ACF|10.0.1.7:1720|1325_endp|19618|gunter:h323_ID|frank:h323_ID|true;
Sherry:h323_ID|Accel-GW1:h323_ID|200000|Wed, 26 Jun 2002 17:29:55 +0800 <2>
Number of Calls: 1 Active: 1 From NB: 0
;

• Find, f Find a registered endpoint by an alias or a pre�x.

Format:
Find Alias
RCF|IP:Port|Aliases|Terminal_Type|EndpointID
;

Example:
f 800
RCF|10.1.1.10:1720|800:dialedDigits=Wei:h323_ID|terminal|1289_endp

12. Monitoring the Gatekeeper 70

;
f 801
SoftPBX: alias 801 not found!

• FindVerbose, fv Find details of a registered endpoint by an alias or a pre�x.

Format:
FindVerbose Alias
RCF|IP:Port|Aliases|Terminal_Type|EndpointID
Registration_Time C(Active_Call/Connected_Call/Total_Call) <r>
[Prefixes: ##] (gateway only)
;

Example:
fv 02
RCF|10.0.1.100:1720|TFN:h323_ID|gateway|4037_CGK1
Wed, 26 Jun 2002 17:47:29 +0800 C(0/84/120) <1>
Prefixes: 02,09
;

• UnregisterIP Forcedly unregister an endpoint by IP and call signalling port.

Format:
UnregisterIP IP[:Port]

Example:
UnregisterIP 10.0.1.31:1720
URQ|10.0.1.31:1032|1326_endp|maintenance;
SoftPBX: Endpoint 10.0.1.31:1720 unregistered!

• UnregisterAlias Forcedly unregister an endpoint by one of its aliases.

Format:
UnregisterAlias Alias

Example:
UnregisterAlias 601
URQ|10.0.1.31:1032|1326_endp|maintenance;
SoftPBX: Endpoint 601 unregistered!

• UnregisterAllEndpoints Forcedly unregister all registered endpoints.

Format:

Example:
UnregisterAllEndpoints
URQ|10.0.1.7:1024|1325_endp|maintenance;
URQ|10.0.1.8:1024|1322_endp|maintenance;
URQ|10.0.1.32:1032|1324_endp|maintenance;
URQ|10.0.1.36:1032|1323_endp|maintenance;
URQ|10.0.1.42:1032|1318_endp|maintenance;
Done
;

• DisconnectCall Disconnect a call with given number.

12. Monitoring the Gatekeeper 71

Format:
DisconnectCall Number

Example:
DisconnectCall 1533

• DisconnectIP Disconnect all calls of an endpoint by IP and call signalling port.

Format:
DisconnectIP IP[:Port]

Example:
DisconnectIP 10.0.1.31:1720

• DisconnectAlias Disconnect all calls of an endpoint by one of its aliases.

Format:
DisconnectAlias Alias

Example:
DisconnectAlias 601

• ClearCalls Disconnect all calls on the gatekeeper.

• GK Show the information of the parent gatekeeper.

• Trace Set the status interface output trace level. It controls which messages are sent to this client:

� trace 0 or trace min Only direct responses to commands and reload noti�cations.
� trace 1 CDRs, direct responses to commands and reload noti�cations.
� trace 2 or trace max Show all (RAS, CDRs, direct responses to commands, reload noti�cations,

etc).

• Debug Only used for debug purpose. Options:

� trc [+|-|n] Show/modify trace level.
� cfg SEC PAR Read and print a con�g parameter in a section.
� set SEC PAR VAL Write a con�g value parameter in a section.
� remove SEC PAR Remove a con�g value parameter in a section.
� remove SEC Remove a section.
� printrm VERBOSE Print all removed endpoint records.

Example:
debug trc 3
debug set RoutedMode H245Routed 1

• Who Show all people on the status port.

• RouteReject Terminate this call on a virtual queue. This command is used as a response to a
RouteRequest event (see below).

Format:
RouteReject CallingEndpointID CallRef

Example:

12. Monitoring the Gatekeeper 72

RouteReject endp_4711 1234

• RouteToAlias, rta Route this call on a virtual queue to the speci�ed alias. This command is used as
a response to a RouteRequest event (see below).

Format:
RouteToAlias Alias CallingEndpointID CallRef

Example:
RouteToAlias Suzi endp_4711 1234

• RouteToGateway, rtg Route this call on a virtual queue to the speci�ed alias and set the destina-
tionSignallAddress. This command is used as a response to a RouteRequest event (see below). You
can use this command to route calls to out-of-zone gateways or MCUs not registered with the gate-
keeper. Make sure that the 'vqueue' and 'explicit' policy is in e�ect for these calls.

Format:
RouteToGateway Alias IP:Port CallingEndpointID CallRef

Example:
RouteToGateway Suzi 192.168.0.50 endp_4711 1234

• Exit, q Quit the status port.

• TransferCall Transfer an established call from alias A to alias B. When before alias A is talking with
alias X, then alias A is talking with alias B after the TransferCall.
Currently this works only with endpoints that properly support Q.931 Facility messages (so it doesn't
work with Netmeeting).

Format:
TransferCall Source-Alias New-Destination-Alias

Example:
TransferCall Frank Peter

12.3 Messages (Reference)

The section describes the messages output to the status interface.

• GCF|IP|Aliases|Endpoint_Type; The gatekeeper receives a GatekeeperRequest (GRQ) and responds
with a GatekeeperCon�rm (GCF).

• GRJ|IP|Aliases|Endpoint_Type|RejectReason; The gatekeeper receives a GatekeeperRequest (GRQ)
and responds with a GatekeeperReject (GRJ).

• RCF|IP:Port|Aliases|Endpoint_Type|EndpointID; The gatekeeper receives a RegistrationRequest
(RRQ) and responds with a RegistrationCon�rm (RCF).

• RRJ|IP|Aliases|Endpoint_Type|RejectReason; The gatekeeper receives a RegistrationRequest (RRQ)
and responds with a RegistrationReject (RRJ).

• ACF|Caller_IP:Port|Caller_EndpointID|CRV|DestinationInfo|SrcInfo|IsAnswered[|CallID];
The gatekeeper receives an AdmissionRequest (ARQ) and responds with an AdmissionCon�rm (ACF).
The CallID is only sent when SignalCallId=1 is set.

12. Monitoring the Gatekeeper 73

• ARJ|Caller_IP:Port|DestinationInfo|SrcInfo|IsAnswered|RejectReason[|CallID]; The gate-
keeper receives an AdmissionRequest (ARQ) and responds with an AdmissionReject (ARJ). The
CallID is only sent when SignalCallId=1 is set.

• DCF|IP|EndpointID|CRV|DisengageReason[|CallID]; The gatekeeper receives a DisengageRequest
(DRQ) and responds with a DisengageCon�rm (DCF). The CallID is only sent when SignalCallId=1
is set.

• DRJ|IP|EndpointID|CRV|RejectReason[|CallID]; The gatekeeper receives a DisengageRequest (DRQ)
and responds with a DisengageReject (DRJ). The CallID is only sent when SignalCallId=1 is set.

• LCF|IP|EndpointID|DestinationInfo|SrcInfo; The gatekeeper receives a LocationRequest (LRQ)
and responds with a LocationCon�rm (LCF).

• LRJ|IP|DestinationInfo|SrcInfo|RejectReason; The gatekeeper receives a LocationRequest (LRQ)
and responds with a LocationReject (LRJ).

• BCF|IP|EndpointID|Bandwidth; The gatekeeper receives a BandwidthRequest (BRQ) and responds
with a BandwidthCon�rm (BCF).

• BRJ|IP|EndpointID|Bandwidth|RejectReason; The gatekeeper receives a BandwidthRequest (BRQ)
and responds with a BandwidthReject (BRJ).

• UCF|IP|EndpointID; The gatekeeper receives an UnregistrationRequest (URQ) and responds with an
UnregistrationCon�rm (UCF).

• URJ|IP|EndpointID|RejectReason; The gatekeeper receives an UnregistrationRequest (URQ) and re-
sponds with an UnregistrationReject (URJ).

• IRQ|IP:Port|EndpointID; The gatekeeper sends an InfoRequest (IRQ) to an endpoint to query if it is
still alive. The endpoint shall respond with an InfoRequestResponse (IRR) immediately.

• URQ|IP:Port|EndpointID|Reason; The gatekeeper sends an UnregistrationRequest (URQ) to an end-
point to cancel its registration. The endpoint shall respond with an UnregistrationCon�rm (UCF).

• CDR|CallNo|CallId|Duration|Starttime|Endtime|CallerIP|CallerEndId| \
CalledIP|CalledEndId|DestinationInfo|SrcInfo|GatekeeperID; After a call disconnected, the call
detail record is shown (in one line).

• RouteRequest|CallerIP:Port|CallerEndpointId|CallRef|VirtualQueue|CallerAlias[|CallID];
Request for an external application to route an incomming call on a virtual queue. This can be done
with a RouteToAlias or RouteReject command. The CallID is only sent when SignalCallId=1 is set.

