
SIPp

SIPp reference documentation

by Richard GAYRAUD [initial code], Olivier JACQUES [code/documentation], Many contributors [code]

Table of contents

1 Foreword... 4

2 Installation... 5

2.1 Getting SIPp..6

2.2 Stable release.. 6

2.3 Unstable release.. 6

2.4 Available platforms...6

2.5 Installing SIPp...7

2.6 Increasing File Descriptors Limit... 8

3 Using SIPp...9

3.1 Main features.. 9

3.2 Integrated scenarios.. 9

3.2.1 UAC..9

3.2.2 UAC with media...10

3.2.3 UAS.. 10

3.2.4 regexp... 11

3.2.5 branch... 11

Copyright © 2004,2005,2006 The authors All rights reserved.

3.2.6 3PCC.. 12

3.3 3PCC Extended...14

3.4 Traffic control... 15

3.5 Remote control..16

3.6 Running SIPp in background.. 17

3.7 Create your own XML scenarios.. 17

3.7.1 Structure of client (UAC like) XML scenarios.. 27

3.7.2 Structure of server (UAS like) XML scenarios..33

3.7.3 Actions..34

3.7.4 Injecting values from an external CSV during calls...38

3.7.5 Conditional branching in scenarios.. 39

3.7.6 SIP authentication...42

3.8 Screens.. 45

3.9 Transport modes..49

3.9.1 UDP mono socket...49

3.9.2 UDP multi socket... 50

3.9.3 UDP with one socket per IP address.. 50

3.9.4 TCP mono socket... 51

3.9.5 TCP multi socket.. 51

3.9.6 TCP reconnections... 52

3.9.7 TLS mono socket..52

3.9.8 TLS multi socket.. 52

3.9.9 IPv6 support... 52

3.9.10 Multi-socket limit... 53

3.10 Handling media with SIPp.. 53

SIPp

Page 2
Copyright © 2004,2005,2006 The authors All rights reserved.

3.10.1 RTP echo.. 53

3.10.2 PCAP Play.. 53

3.11 Exit codes.. 54

3.12 Statistics.. 54

3.12.1 Response times... 54

3.12.2 Available counters.. 54

3.12.3 Importing statistics in spreadsheet applications... 55

3.13 Error handling... 56

3.13.1 Unexpected messages... 56

3.13.2 Retransmissions (UDP only).. 56

3.13.3 Log files (error + log + screen)...56

3.14 Online help (-h)... 57

4 Performance testing with SIPp.. 64

4.1 Advices to run performance tests with SIPp...64

4.2 SIPp's internal scheduling...65

5 Useful tools aside SIPp..66

5.1 JEdit.. 66

5.2 Wireshark/tshark... 66

5.3 SIP callflow...66

6 Getting support.. 66

7 Contributing to SIPp..66

SIPp

Page 3
Copyright © 2004,2005,2006 The authors All rights reserved.

1. Foreword

SIPp is a performance testing tool for the SIP protocol. It includes a few basic SipStone user agent scenarios (UAC and UAS) and establishes and releases multiple
calls with the INVITE and BYE methods. It can also reads XML scenario files describing any performance testing configuration. It features the dynamic display of
statistics about running tests (call rate, round trip delay, and message statistics), periodic CSV statistics dumps, TCP and UDP over multiple sockets or multiplexed
with retransmission management, regular expressions and variables in scenario files, and dynamically adjustable call rates.

SIPp can be used to test many real SIP equipements like SIP proxies, B2BUAs, SIP media servers, SIP/x gateways, SIP PBX, ... It is also very useful to emulate
thousands of user agents calling your SIP system.

Want to see it?

Here is a screenshot

SIPp

Page 4
Copyright © 2004,2005,2006 The authors All rights reserved.

And here is a video (Windows Media Player 9 codec or above required) of SIPp in action:

sipp-01.wmv (images/sipp-01.wmv)

2. Installation

SIPp

Page 5
Copyright © 2004,2005,2006 The authors All rights reserved.

images/sipp-01.wmv

2.1. Getting SIPp

SIPp is released under the GNU GPL license (http://www.gnu.org/copyleft/gpl.html) . All the terms of the license apply. It is provided to the SIP community by
Hewlett-Packard (http://www.hp.com) engineers in hope it can be useful.

We receive some support from our company to work on this tool freely, but HP does not provide any support nor warranty concerning SIPp.

2.2. Stable release

Like many other "open source" projects, there are two versions of SIPp: a stable and unstable release. Stable release: before being labelled as "stable", a SIPp release
is thoroughly tested. So you can be confident that all mentioned features will work :)

Note:
Use the stable release for your everyday use and if you are not blocked by a specific feature present in the "unstable release" (see below).

SIPp stable download page (http://sourceforge.net/project/showfiles.php?group_id=104305)

2.3. Unstable release

Unstable release: all new features and bug fixes are checked in SIPp's SVN (http://sipp.svn.sourceforge.net/viewvc/sipp/sipp/trunk/) repository as soon as they are
available. Every night, an automatic extraction is done and the source code of this release is made available.

Note:
Use the unstable release if you absolutely need a bug fix or a feature that is not in the stable release.

SIPp "unstable" download page (http://sipp.sourceforge.net/snapshots/)

2.4. Available platforms

SIPp is available on almost all UNIX platforms: HPUX, Tru64, Linux (RedHat, Debian, FreeBSD), Solaris/SunOS.

A Windows port has been contributed. You can now compile SIPp under Cygwin. A binary package with a Windows installer is also available. Check the download
page (http://sourceforge.net/project/showfiles.php?group_id=104305) to download it and run SIPp under Windows.

SIPp

Page 6
Copyright © 2004,2005,2006 The authors All rights reserved.

http://www.gnu.org/copyleft/gpl.html
http://www.hp.com
http://sourceforge.net/project/showfiles.php?group_id=104305
http://sipp.svn.sourceforge.net/viewvc/sipp/sipp/trunk/
http://sipp.sourceforge.net/snapshots/
http://sourceforge.net/project/showfiles.php?group_id=104305
http://sourceforge.net/project/showfiles.php?group_id=104305

Note:
SIPp works only over Windows XP and will not work on Win2000. This is because of IPv6 support. The Windows installer should prevent someone to install SIPp on Win2000.

2.5. Installing SIPp
• On Linux, SIPp is provided in the form of source code. You will need to compile SIPp to actually use it.
• Pre-requisites to compile SIPp are (see Compilation tips (http://sipp.sourceforge.net/wiki/index.php/Compilation)):

• C++ Compiler
• curses or ncurses library
• For authentication and TLS support: OpenSSL >= 0.9.8
• For pcap play support: libpcap and libnet
• For distributed pauses: Gnu Scientific Libraries (http://www.gnu.org/software/gsl/)

• You have four options to compile SIPp:
• Without TLS (Transport Layer Security) and authentication support: This is the recommended setup if you don't need to handle SIP authentication and/or

TLS. In this case, there are no depencies to install before building SIPp. It is straight forward:
gunzip sipp-xxx.tar.gz
tar -xvf sipp-xxx.tar
cd sipp
make

• With TLS and authentication support, you must have installed OpenSSL library (http://www.openssl.org/) (>=0.9.8) (which may come with your system).
Building SIPp consist only in adding the "ossl" option to the make command:
gunzip sipp-xxx.tar.gz
tar -xvf sipp-xxx.tar
cd sipp
make ossl

• With PCAP play and without authentication support:
gunzip sipp-xxx.tar.gz
tar -xvf sipp-xxx.tar
cd sipp
make pcapplay

• With PCAP play and authentication support:
gunzip sipp-xxx.tar.gz
tar -xvf sipp-xxx.tar
cd sipp
make pcapplay_ossl

Note:

SIPp

Page 7
Copyright © 2004,2005,2006 The authors All rights reserved.

http://sipp.sourceforge.net/wiki/index.php/Compilation
http://www.gnu.org/software/gsl/
http://www.openssl.org/

To enable GSL (http://www.gnu.org/software/gsl/) at compile time, you must install GSL and its include files, as well as un-comment the lines in the global.mk file of SIPp distribution. Then, re-compile SIPp.

• On Windows, SIPp is provided both with the source and the pre-compiled executable. Just execute the installer to have SIPp installed.

Warning:
SIPp compiles under CYGWIN, provided that you installed IPv6 extension for CYGWIN (http://win6.jp/Cygwin/), as well as OpenSSL and libncurses.

• To compile SIPp on Windows with pcap (media support), you must:
• Copy the WinPcap developer package (http://www.winpcap.org/devel.htm) to "C:\cygwin\lib\WpdPack"
• Remove or rename "pthread.h" in "C:\cygwin\lib\WpdPack\Include", as it interfers with pthread.h from cygwin
• Compile using either "make pcapplay_cygwin" or "pcapplay_ossl_cygwin"

2.6. Increasing File Descriptors Limit

If your system does not supports enough file descriptors, you may experience problems when using the TCP/TLS mode with many simultaneous calls.

You have two ways to overcome this limit: either use the -max_socket command line option or change the limits of your system.

Depending on the operating system you use, different procedures allow you to increase the maximum number of file descriptors:

• On Linux 2.4 kernels the default number of file descriptors can be increased by modifying the /etc/security/limits.conf and the
/etc/pam.d/login file.

Open the /etc/security/limits.conf file and add the following lines:
soft nofile 1024
hard nofile 65535

Open the /etc/pam.d/login and add the following line
session required /lib/security/pam_limits.so

The system file descriptor limit is set in the /proc/sys/fs/file-max file. The following command will increase the file descriptor limit:
echo 65535> /proc/sys/fs/file-max

To increase the number of file descriptors to its maximum limit (65535) set in the /etc/security/limits.conf file, type:
ulimit -n unlimited

Logout then login again to make the changes effective.

• On HP-UX systems the default number of file descriptors can be increased by modifying the system configuration with the sam utility. In the Kernel Configuration
menu, select Configurable parameters, and change the following attributes:

SIPp

Page 8
Copyright © 2004,2005,2006 The authors All rights reserved.

http://www.gnu.org/software/gsl/
http://win6.jp/Cygwin/
http://www.winpcap.org/devel.htm

maxfiles : 4096
maxfiles_lim : 4096
nfiles : 4096
ninode : 4096
max_thread_proc : 4096
nkthread : 4096

3. Using SIPp

3.1. Main features

SIPp allows to generate one or many SIP calls to one remote system. The tool is started from the command line. In this example, two SIPp are started in front of each
other to demonstrate SIPp capabilities.

Run sipp with embedded server (uas) scenario:
./sipp -sn uas

On the same host, run sipp with embedded client (uac) scenario
./sipp -sn uac 127.0.0.1

3.2. Integrated scenarios

Integrated scenarios? Yes, there are scenarios that are embedded in SIPp executable. While you can create your own custom SIP scenarios (see how to create your
own XML scenarios), a few basic (yet useful) scenarios are available in SIPp executable.

3.2.1. UAC

Scenario file: uac.xml (uac.xml.html) (original XML file (uac.xml))
SIPp UAC Remote

|(1) INVITE |
|------------------>|
|(2) 100 (optional) |
|<------------------|
|(3) 180 (optional) |
|<------------------|
|(4) 200 |
|<------------------|
|(5) ACK |
|------------------>|
| |

SIPp

Page 9
Copyright © 2004,2005,2006 The authors All rights reserved.

uac.xml.html
uac.xml

|(6) PAUSE |
| |
|(7) BYE |
|------------------>|
|(8) 200 |
|<------------------|

3.2.2. UAC with media

Scenario file: uac_pcap.xml (uac_pcap.xml.html) (original XML file (uac_pcap.xml))
SIPp UAC Remote

|(1) INVITE |
|------------------>|
|(2) 100 (optional) |
|<------------------|
|(3) 180 (optional) |
|<------------------|
|(4) 200 |
|<------------------|
|(5) ACK |
|------------------>|
| |
|(6) RTP send (8s) |
|==================>|
| |
|(7) RFC2833 DIGIT 1|
|==================>|
| |
|(8) BYE |
|------------------>|
|(9) 200 |
|<------------------|

3.2.3. UAS

Scenario file: uas.xml (uas.xml.html) (original XML file (uas.xml))
Remote SIPp UAS

|(1) INVITE |
|------------------>|
|(2) 180 |
|<------------------|
|(3) 200 |
|<------------------|
|(4) ACK |

SIPp

Page 10
Copyright © 2004,2005,2006 The authors All rights reserved.

uac_pcap.xml.html
uac_pcap.xml
uas.xml.html
uas.xml

|------------------>|
| |
|(5) PAUSE |
| |
|(6) BYE |
|------------------>|
|(7) 200 |
|<------------------|

3.2.4. regexp

Scenario file: regexp.xml (regexp.xml.html) (original XML file (regexp.xml))

This scenario, which behaves as an UAC is explained in greater details in this section.
SIPp regexp Remote

|(1) INVITE |
|------------------>|
|(2) 100 (optional) |
|<------------------|
|(3) 180 (optional) |
|<------------------|
|(4) 200 |
|<------------------|
|(5) ACK |
|------------------>|
| |
|(6) PAUSE |
| |
|(7) BYE |
|------------------>|
|(8) 200 |
|<------------------|

3.2.5. branch

Scenario files: branchc.xml (branchc.xml.html) (original XML file (branchc.xml)) and branchs.xml (branchs.xml.html) (original XML file (branchs.xml))

Those scenarios, which work against each other (branchc for client side and branchs for server side) are explained in greater details in this section.
REGISTER ---------->

200 <----------
200 <----------

INVITE ---------->
100 <----------

SIPp

Page 11
Copyright © 2004,2005,2006 The authors All rights reserved.

regexp.xml.html
regexp.xml
branchc.xml.html
branchc.xml
branchs.xml.html
branchs.xml

180 <----------
403 <----------
200 <----------
ACK ---------->

[5000 ms]
BYE ---------->
200 <----------

3.2.6. 3PCC

3PCC stands for 3rd Party Call Control. 3PCC is described in RFC 3725 (http://www.ietf.org/rfc/rfc3725.txt) . While this feature was first developped to allow 3PCC
like scenarios, it can also be used for every case where you would need one SIPp to talk to several remotes.

In order to keep SIPp simple (remember, it's a test tool!), one SIPp instance can only talk to one remote. Which is an issue in 3PCC call flows, like call flow I (SIPp
beeing a controller):

A Controller B
(1) INVITE no SDP	
<------------------	
(2) 200 offer1	
------------------>	
	(3) INVITE offer1
	------------------>
	(4) 200 OK answer1
	<------------------
	(5) ACK
	------------------>
(6) ACK answer1	
<------------------	
(7) RTP	
.......................................	

Scenario file: 3pcc-A.xml (3pcc-A.xml.html) (original XML file (3pcc-A.xml))

Scenario file: 3pcc-B.xml (3pcc-B.xml.html) (original XML file (3pcc-B.xml))

Scenario file: 3pcc-C-A.xml (3pcc-C-A.xml.html) (original XML file (3pcc-C-A.xml))

Scenario file: 3pcc-C-B.xml (3pcc-C-B.xml.html) (original XML file (3pcc-C-B.xml))

The 3PCC feature in SIPp allows to have two SIPp instances launched and synchronised together. If we take the example of call flow I, one SIPp instance will take
care of the dialog with remote A (this instance is called 3PCC-C-A for 3PCC-Controller-A-Side) and another SIPp instance will take care of the dialog with remote B
(this instance is called 3PCC-C-B for 3PCC-Controller-B-Side).

SIPp

Page 12
Copyright © 2004,2005,2006 The authors All rights reserved.

http://www.ietf.org/rfc/rfc3725.txt
3pcc-A.xml.html
3pcc-A.xml
3pcc-B.xml.html
3pcc-B.xml
3pcc-C-A.xml.html
3pcc-C-A.xml
3pcc-C-B.xml.html
3pcc-C-B.xml

The 3PCC call flow I will, in reality, look like this (Controller has been divided in two SIPp instances):

A Controller A Controller B B
(1) INVITE no SDP		
<------------------		
(2) 200 offer1		
------------------>		
sendCmd (offer1)		
	----------------->	
	recvCmd	
		(3) INVITE offer1
		------------------>
		(4) 200 OK answer1
		<------------------
	sendCmd	
	(answer1)	
	<-----------------	
recvCmd	(5) ACK	
		------------------>
(6) ACK answer1		
<------------------		
(7) RTP		
..		

As you can see, we need to pass informations between both sides of the controller. SDP "offer1" is provided by A in message (2) and needs to be sent to B side in
message (3). This mechanism is implemented in the scenarios through the <sendCmd> command. This:
<sendCmd>
<![CDATA[
Call-ID: [call_id]
[$1]

]]>
</sendCmd>

Will send a "command" to the twin SIPp instance. Note that including the Call-ID is mandatory in order to correlate the commands to actual calls. In the same manner,
this:
<recvCmd>
<action

<ereg regexp="Content-Type:.*"
search_in="msg"
assign_to="2"/>

</action>
</recvCmd>

SIPp

Page 13
Copyright © 2004,2005,2006 The authors All rights reserved.

Will receive a "command" from the twin SIPp instance. Using the regular expression mechanism, the content is retrieved and stored in a call variable ($2 in this case),
ready to be reinjected
<send>
<![CDATA[

ACK sip:[service]@[remote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
Call-ID: [call_id]
CSeq: 1 ACK
Contact: sip:sipp@[local_ip]:[local_port]
Max-Forwards: 70
Subject: Performance Test
[$2]

]]>
</send>

In other words, sendCmd and recvCmd can be seen as synchronization points between two SIPp instances, with the ability to pass parameters between each other.

Another scenario that has been reported to be do-able with the 3PCC feature is the following:

• A calls B. B answers. B and A converse
• B calls C. C answers. C and B converse
• B "REFER"s A to C and asks to replace A-B call with B-C call.
• A accepts. A and C talk. B drops out of the calls.

3.3. 3PCC Extended

An extension of the 3pcc mode is implemented in sipp. This feature allows n twin sipp instances to communicate each other, each one of them being connected to a
remote host.

The sipp instance which initiates the call is launched in "master" mode. The others are launched in "slave" mode. Twin sipp instances have names, given in the
command line (for example, s1, s2...sn for the slaves and m for the master) Correspondances between instances names and their addresses must be stored in a file
(provided by -slave_cfg command line argument), in the following format:

s1;127.0.0.1:8080
s2;127.0.0.1:7080
m;127.0.0.1:6080

SIPp

Page 14
Copyright © 2004,2005,2006 The authors All rights reserved.

Each twin sipp instance must access a different copy of this file.

sendCmd and recvCmd have additional attributes:
<sendCmd dest="s1">
<![CDATA[
Call-ID: [call_id]
From: m
[$1]

]]>
</sendCmd>

Will send a command to the "s1" peer instance, which can be either master or slave, depending on the command line argument, which must be consistent with the
scenario: a slave instance cannot have a sendCmd action before having any recvCmd. Note that the message must contain a "From" field, filled with the name of the
sender.
<recvCmd src="m">
<action

<ereg regexp="Content-Type:.*"
search_in="msg"
assign_to="2"/>

</action>
</recvCmd>

Indicates that the twin command is expected to be received from the "m" peer instance.

Note that the master must be the launched at last.

There is no integrated scenarios for the 3pcc extended mode, but you can easily adapt those from 3pcc.

Example: the following drawing illustrate the entire procedure. The arrows that are shown between SIPp master and slaves depict only the synchronization commands
exchanged between the different SIPp instances. The SIP message exchange takes place as usual.

3.4. Traffic control

SIPp generates SIP traffic according to the scenario specified. You can control the number of calls (scenario) that are started per second. This can be done either:

• Interactively, by pressing keys on the keyboard
• '+' key to increase call rate by 1
• '-' key to decrease call rate by 1
• '*' key to increase call rate by 10
• '/' key to decrease call rate by 10

SIPp

Page 15
Copyright © 2004,2005,2006 The authors All rights reserved.

• At starting time, by specifying parameters on the command line:
• "-r" to specify the call rate in number of calls per seconds
• "-rp" to specify the "rate period" in milliseconds for the call rate (default is 1000ms/1sec). This allows you to have n calls every m milliseconds (by using -r

n -rp m).

Note:
Example: run SIPp at 7 calls every 2 seconds (3.5 calls per second)

./sipp -sn uac -r 7 -rp 2000 127.0.0.1

You can also pause the traffic by pressing the 'p' key. SIPp will stop placing new calls and wait until all current calls go to their end. You can resume the traffic by
pressing 'p' again.

To quit SIPp, press the 'q' key. SIPp will stop placing new calls and wait until all current calls go to their end. SIPp will then exit.

You can also force SIPp to quit immediatly by pressing the 'Q' key. Current calls will be terminated by sending a BYE or CANCEL message (depending if the calls
have been established or not). The same behaviour is obtained by pressing 'q' twice.

Note:
TIP: you can place a defined number of calls and have SIPp exit when this is done. Use the -m option on the command line.

3.5. Remote control

SIPp can be "remote-controlled" through a UDP socket. This allows for example

• To automate a series of actions, like increasing the call rate smoothly, wait for 10 seconds, increase more, wait for 1 minute and loop
• Have a feedback loop so that an application under test can remote control SIPp to lower the load, pause the traffic, ...

Each SIPp instance is listening to a UDP socket. It starts to listen to port 8888 and each following SIPp instance (up to 60) will listen to base_port + 1 (8889, 8890,
...).

It is then possible to control SIPp like this:
echo p >/dev/udp/x.y.z.t/8888 -> put SIPp in pause state (p key)
echo q >/dev/udp/x.y.z.t/8888 -> quit SIPp (q key)

Note:
All keys available through keyboard are also available in the remote control interface

SIPp

Page 16
Copyright © 2004,2005,2006 The authors All rights reserved.

You could also have a small shell script to automate a serie of action. For example, this script will increase the call rate by 10 more new calls/s every 5 seconds, wait
at this call rate for one minute and exit SIPp:
#!/bin/sh
echo "*" >/dev/udp/127.0.0.1/8889
sleep 5
echo "*" >/dev/udp/127.0.0.1/8889
sleep 5
echo "*" >/dev/udp/127.0.0.1/8889
sleep 5
echo "*" >/dev/udp/127.0.0.1/8889
sleep 60
echo "q" >/dev/udp/127.0.0.1/8889

3.6. Running SIPp in background

SIPp can be launched in background mode (-bg command line option).

By doing so, SIPp will be detached from the current terminal and run in the background. The PID of the SIPp process is provided. If you didn't specify a number of
calls to execute with the -m option, SIPp will run forever.

There is a mechanism implemented to stop SIPp smoothly. The command kill -SIGUSR1 [SIPp_PID] will instruct SIPp to stop placing any new calls and
finish all ongoing calls before exiting.

3.7. Create your own XML scenarios

Of course embedded scenarios will not be enough. So it's time to create your own scenarios. A SIPp scenario is written in XML (a DTD that may help you write SIPp
scenarios does exist and has been tested with jEdit - this is described in a later section). A scenario will always start with:
<?xml version="1.0" encoding="ISO-8859-1" ?>
<scenario name="Basic Sipstone UAC">

And end with:
</scenario>

Easy, huh? Ok, now let's see what can be put inside. You are not obliged to read the whole table now! Just go in the next section for an example.

Command Attribute(s) Description Example

<send> retrans Used for UDP
transport only: it
specifies the T1 timer
value, as described in

<send
retrans="500">: will
initiate T1 timer to 500
milliseconds (RFC3261

SIPp

Page 17
Copyright © 2004,2005,2006 The authors All rights reserved.

SIP RFC 3261, section
17.1.1.2.

default).

start_rtd Starts one of the 5
"Response Time
Duration" timer. (see
statistics section).

<send
start_rtd="2">: the
timer number 2 will
start when the
message is sent.

rtd Stops one of the 5
"Response Time
Duration" timer.

<send rtd="2">: the
timer number 2 will
stop when the
message is sent.

crlf Displays an empty line
after the arrow for the
message in main SIPp
screen.

<send
crlf="true">

lost Emulate packet lost.
The value is specified
as a percentage.

<send lost="10">:
10% of the message
sent are actually not
sent :).

next You can put a "next" in
a send to go to another
part of the script when
you are done with
sending the message.
See conditional
branching section for
more info.

Example to jump to
label "12" after sending
an ACK:
<send

next="12">
<![CDATA[

ACK
sip:[service]@[remote_ip]:[remote_port]
SIP/2.0

Via: ...
From: ...
To: ...
Call-ID:

...
Cseq: ...
Contact:

...
Max-Forwards: ...

SIPp

Page 18
Copyright © 2004,2005,2006 The authors All rights reserved.

Subject:
...
Content-Length: 0

]]>
</send>

test You can put a "test"
next to a "next"
attribute to indicate
that you only want to
branch to the label
specified with "next" if
the variable specified
in "test" is set (through
regexp for example).
See conditional
branching section for
more info.

Example to jump to
label "6" after sending
an ACK only if variable
4 is set:
<send next="6"

test="4">
<![CDATA[

ACK
sip:[service]@[remote_ip]:[remote_port]
SIP/2.0

Via: ...
From: ...
To: ...
Call-ID:

...
Cseq: ...
Contact:

...
Max-Forwards: ...

Subject:
...
Content-Length: 0

]]>
</send>

counter Increments the counter
given as parameter
when the message is
sent. A total of 5
counter can be used.
The counter are saved
in the statistic file.

<send
counter="1">:
Increments counter #1
when the message is
sent.

<recv> response Indicates what SIP
message code is

<recv
response="200">:

SIPp

Page 19
Copyright © 2004,2005,2006 The authors All rights reserved.

expected. SIPp will expect a SIP
message with code
"200".

request Indicates what SIP
message request is
expected.

<recv
request="ACK">:
SIPp will expect an
"ACK" SIP message.

optional Indicates if the
message to receive is
optional. In case of an
optional message and
if the message is
actually received, it is
not seen as a
unexpected message.

<recv
response="100"
optional="true">:
The 100 SIP message
can be received
without being
considered as
"unexpected".

crlf Displays an empty line
after the arrow for the
message in main SIPp
screen.

<recv
crlf="true">

rrs Record Route Set. if
this attribute is set to
"true", then the
"Record-Route:"
header of the message
received is stored and
can be recalled using
the [routes] keyword.

<recv
response="100"
rrs="true">.

auth Authentication. if this
attribute is set to "true",
then the
"Proxy-Authenticate:"
header of the message
received is stored and
is used to build the
[authentication]
keyword.

<recv
response="407"
auth="true">.

SIPp

Page 20
Copyright © 2004,2005,2006 The authors All rights reserved.

start_rtd Starts one of the 5
"Response Time
Duration" timer. (see
statistics section).

<recv
start_rtd="4">: the
timer number 4 will
start when the
message is received.

rtd Stops one of the 5
"Response Time
Duration" timer.

<recv rtd="4">: the
timer number 4 will
stop when the
message is received.

lost Emulate packet lost.
The value is specified
as a percentage.

<recv lost="10">:
10% of the message
received are thrown
away.

action Specify an action when
receiving the message.
See Actions section for
possible actions.

Example of a "regular
expression" action:
<recv
response="200">
<action>
<ereg

regexp="([0-9]{1,3}\.){3}[0-9]{1,3}:[0-9]*"
search_in="msg"
check_it="true"
assign_to="1,2"/>
</action>
</recv>

next You can put a "next" in
an optional receive to
go to another part of
the script if you receive
that message. See
conditional branching
section for more info.

Example to jump to
label "5" when
receiving a 403
message:
<recv

response="100"
optional="true">
</recv>
<recv

response="180"
optional="true">
</recv>
<recv

response="403"

SIPp

Page 21
Copyright © 2004,2005,2006 The authors All rights reserved.

optional="true"
next="5">
</recv>
<recv

response="200">
</recv>

test You can put a "test" in
an optional receive to
go to another part of
the script if you receive
that message only if
the variable specified
by "test" is set. See
conditional branching
section for more info.

Example to jump to
label "5" when
receiving a 403
message only if
variable 3 is set:
<recv

response="100"
optional="true">
</recv>
<recv

response="180"
optional="true">
</recv>
<recv

response="403"
optional="true"
next="5"
test="3">
</recv>
<recv

response="200">
</recv>

counter Increments the counter
given as parameter
when the message is
received. A total of 5
counter can be used.
The counter are saved
in the statistic file.

<recv
counter="1">:
Increments counter #1
when the message is
received.

regexp_match Boolean. Indicates if
'request' ('response' is
not available) is given
as a regular
expression. If so, the
recv command will

Example of a recv
command that
matches MESSAGE or
PUBLISH or
SUBSCRIBE requests:
<recv

SIPp

Page 22
Copyright © 2004,2005,2006 The authors All rights reserved.

match against the
regular expression.
This allows to catch
several cases in the
same receive
command.

request="MESSAGE|PUBLISH|SUBSCRIBE"
crlf="true"
regexp_match="true">
</recv>

<pause> milliseconds Specify the pause
delay, in milliseconds.
When this delay is not
set, the value of the -d
command line
parameter is used.

<pause
milliseconds="5000"/>:
pause the scenario for
5 seconds.

min Indicates a minimum
value for a pause. A
random pause is
executed between min
and max values, using
a uniform distribution.

<pause min="2000"
max="5000"/> for
pauses between 2 and
5 seconds.

max Indicates a maximum
value for a pause. A
random pause is
executed between min
and max values, using
a uniform distribution..

<pause min="2000"
max="5000"/> for
pauses between 2 and
5 seconds.

normal If true, use a normal
distribution pause with
a mean and standard
deviation (if GSL is
available at compile
time).

<pause
normal="true"
mean="60000"
stdev="15000"/>
provides a normal
pause with a mean of
60 seconds (i.e.
60,000 ms) and a
standard deviation of
15 seconds. The mean
and standard deviation
are specified as integer
milliseconds. The

SIPp

Page 23
Copyright © 2004,2005,2006 The authors All rights reserved.

distribution will look
like:

lognormal If true, the pause is
specified in terms of
the mean and standard
deviation of the normal
distribution that is
exponentiated. (if GSL
is available at compile
time).

<pause
lognormal="true"
mean="12.28"
stdev="1" />
creates a distribution's
whose natural
logarithm has a mean
of 12.28 and a
standard deviation of
1. The mean and
standard deviation are
specified as double
values (in
milliseconds). The
distribution will look
like:

exponential If true, the pause is
specified using an
exponential
distribution, with an
integer mean. (if GSL
is available at compile
time).

<pause
exponential="true"
mean="900000"/>
creates an
exponentially
distributed pause with
a mean of 15 minutes.
The distribution will

SIPp

Page 24
Copyright © 2004,2005,2006 The authors All rights reserved.

look like:

crlf Displays an empty line
after the arrow for the
message in main SIPp
screen.

<pause
crlf="true">

next You can put a "next" in
a pause to go to
another part of the
script when you are
done with the pause.
See conditional
branching section for
more info.

Example to jump to
label "7" after pausing
4 seconds:
<pause
milliseconds="4000"
next="7"/>

<nop> action The nop command
doesn't do anything at
SIP level. It is only
there to specify an
action to execute. See
Actions section for
possible actions.

Execute the
play_pcap_audio/video
action:
<nop>
<action>
<exec

play_pcap_audio="pcap/g711a.pcap"/>
</action>

</nop>

start_rtd Starts one of the 5
"Response Time
Duration" timer. (see
statistics section).

<nop
start_rtd="1">: the
timer number 1 starts
when nop is executed.

rtd Stops one of the 5
"Response Time
Duration" timer.

<nop rtd="1">: the
timer number 1 will
stops when nop is
executed.

SIPp

Page 25
Copyright © 2004,2005,2006 The authors All rights reserved.

<sendCmd> <![CDATA[]]> Content to be sent to
the twin 3PCC SIPp
instance. The Call-ID
must be included in the
CDATA. In 3pcc
extended mode, the
From must be included
to.

<sendCmd>
<![CDATA[
Call-ID:

[call_id]
[$1]

]]>
</sendCmd>

dest 3pcc extended mode
only: the twin sipp
instance which the
command will be sent
to

<sendCmd
dest="s1">: the
command will be sent
to the "s1" twin
instance

<recvCmd> action Specify an action when
receiving the
command. See Actions
section for possible
actions.

Example of a "regular
expression" to retrieve
what has been send by
a sendCmd command:
<recvCmd>
<action

<ereg
regexp="Content-Type:.*"
search_in="msg"
assign_to="2"/>
</action>

</recvCmd>

src 3pcc extended mode
only: indicate the twin
sipp instance which the
command is expected
to be received from

<recvCmd src =
"s1">: the command
will be expected to be
received from the "s1"
twin instance

<label> id A label is used when
you want to branch to
specific parts in your
scenarios. The "id"
attribute is an integer
where the maximum
value is 19. See
conditional branching

Example: set label
number 13:
<label id="13"/>

SIPp

Page 26
Copyright © 2004,2005,2006 The authors All rights reserved.

section for more info.

<Response Time
Repartition>

value Specify the intervals, in
milliseconds, used to
distribute the values of
response times.

<ResponseTimeRepartition
value="10, 20,
30"/>: response time
values are distributed
between 0 and 10ms,
10 and 20ms, 20 and
30ms, 30 and beyond.

<Call Length
Repartition>

value Specify the intervals, in
milliseconds, used to
distribute the values of
the call length
measures.

<CallLengthRepartition
value="10, 20,
30"/>: call length
values are distributed
between 0 and 10ms,
10 and 20ms, 20 and
30ms, 30 and beyond.

Table 1: List of commands with their attributes
There are not so many commands: send, recv, sendCmd, recvCmd, pause, ResponseTimeRepartition and CallLengthRepartition. To make things even clearer, nothing
is better than an example...

3.7.1. Structure of client (UAC like) XML scenarios

A client scenario is a scenario that starts with a "send" command. So let's start:
<scenario name="Basic Sipstone UAC">
<send>
<![CDATA[

INVITE sip:[service]@[remote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>
Call-ID: [call_id]
Cseq: 1 INVITE
Contact: sip:sipp@[local_ip]:[local_port]
Max-Forwards: 70
Subject: Performance Test
Content-Type: application/sdp
Content-Length: [len]

SIPp

Page 27
Copyright © 2004,2005,2006 The authors All rights reserved.

v=0
o=user1 53655765 2353687637 IN IP[local_ip_type] [local_ip]
s=-
t=0 0
c=IN IP[media_ip_type] [media_ip]
m=audio [media_port] RTP/AVP 0
a=rtpmap:0 PCMU/8000

]]>
</send>

Inside the "send" command, you have to enclose your SIP message between the "<![CDATA" and the "]]>" tags. Everything between those tags is going to be sent
toward the remote system. You may have noticed that there are strange keywords in the SIP message, like [service], [remote_ip], Those keywords are used to
indicate to SIPp that it has to do something with it.

Here is the list:

Keyword Default Description

[service] service Service field, as passed in the
-s service_name

[remote_ip] - Remote IP address, as passed
on the command line.

[remote_port] 5060 Remote IP port, as passed on
the command line. You can add
a computed offset
[remote_port+3] to this value.

[transport] UDP Depending on the value of -t
parameter, this will take the
values "UDP" or "TCP".

[local_ip] Primary host IP address Will take the value of -i
parameter.

[local_ip_type] - Depending on the address type
of -i parameter (IPv4 or IPv6),
local_ip_type will have value
"4" for IPv4 and "6" for IPv6.

[local_port] Random Will take the value of -p

SIPp

Page 28
Copyright © 2004,2005,2006 The authors All rights reserved.

parameter. You can add a
computed offset [local_port+3]
to this value.

[len] - Computed length of the SIP
body. To be used in
"Content-Length" header. You
can add a computed offset
[len+3] to this value.

[call_number] - Index. The call_number starts
from "1" and is incremented by
1 for each call.

[cseq] - Generates automatically the
CSeq number. The initial value
is 1 by default. It can be
changed by using the
-base_cseq command line
option.

[call_id] - A call_id identifies a call and is
generated by SIPp for each
new call. In client mode, it is
mandatory to use the value
generated by SIPp in the
"Call-ID" header. Otherwise,
SIPp will not recognise the
answer to the message sent as
being part of an existing call.
Note: [call_id] can be
pre-pended with an arbitrary
string using '///'. Example:
Call-ID:
ABCDEFGHIJ///[call_id] - it will
still be recognized by SIPp as
part of the same call.

[media_ip] - Depending on the value of -mi
parameter, it is the local IP
address for RTP echo.

SIPp

Page 29
Copyright © 2004,2005,2006 The authors All rights reserved.

[media_ip_type] - Depending on the address type
of -mi parameter (IPv4 or
IPv6), media_ip_type will have
value "4" for IPv4 and "6" for
IPv6. Useful to build the SDP
independently of the media IP
type.

[media_port] - Depending on the value of -mp
parameter, it set the local RTP
echo port number. Default is
none. RTP/UDP packets
received on that port are
echoed to their sender. You
can add a computed offset
[media_port+3] to this value.

[auto_media_port] - Only for pcap. To make audio
and video ports begin from the
value of -mp parameter, and
change for each call using a
periodical system, modulo
10000 (which limits to 10000
concurrent RTP sessions for
pcap_play)

[last_*] - The '[last_*]' keyword is
replaced automatically by the
specified header if it was
present in the last message
received (except if it was a
retransmission). If the header
was not present or if no
message has been received,
the '[last_*]' keyword is
discarded, and all bytes until
the end of the line are also
discarded. If the specified
header was present several
times in the message, all
occurences are concatenated

SIPp

Page 30
Copyright © 2004,2005,2006 The authors All rights reserved.

(CRLF separated) to be used in
place of the '[last_*]' keyword.

[field0-n] - Used to inject values from an
external CSV file. See
"Injecting values from an
external CSV during calls"
section.

[$n] - Used to inject the value of call
variable number n. See
"Actions" section

[authentication] - Used to put the authentication
header. This field can have
parameters, in the following
form: [authentication
username=myusername
password=mypassword]. If no
username is provided, the
value from -s command line
parameter (service) is used. If
no password is provided, the
value from -ap command line
parameter is used. See
"Authentication" section

[pid] - Provide the process ID (pid) of
the main SIPp thread.

[routes] - If the "rrs" attribute in a recv
command is set to "true", then
the "Record-Route:" header of
the message received is stored
and can be recalled using the
[routes] keyword

[next_url] - If the "rrs" attribute in a recv
command is set to "true", then
the [next_url] contains the
contents of the Contact header

SIPp

Page 31
Copyright © 2004,2005,2006 The authors All rights reserved.

(i.e within the '<' and '>' of
Contact)

[branch] - Provide a branch value which is
a concatenation of magic
cookie (z9hG4bK) + call
number + message index in
scenario.

[msg_index] - Provide the message number
in the scenario.

[cseq] - Provides the CSeq value of the
last request received. This
value can be incremented (e.g.
[cseq+1] adds 1 to the CSeq
value of the last request).

Table 1: Keyword list
Now that the INVITE message is sent, SIPp can wait for an answer by using the "recv" command.
<recv response="100"> optional="true"
</recv>

<recv response="180"> optional="true"
</recv>

<recv response="200">
</recv>

100 and 180 messages are optional, and 200 is mandatory. In a "recv" sequence, there must be one mandatory message.

Now, let's send the ACK:
<send>
<![CDATA[

ACK sip:[service]@[remote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
Call-ID: [call_id]
Cseq: 1 ACK
Contact: sip:sipp@[local_ip]:[local_port]

SIPp

Page 32
Copyright © 2004,2005,2006 The authors All rights reserved.

Max-Forwards: 70
Subject: Performance Test
Content-Length: 0

]]>
</send>

We can also insert a pause. The scenario will wait for 5 seconds at this point.
<pause milliseconds="5000"/>

And finish the call by sending a BYE and expecting the 200 OK:
<send retrans="500">
<![CDATA[

BYE sip:[service]@[remote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
Call-ID: [call_id]
Cseq: 2 BYE
Contact: sip:sipp@[local_ip]:[local_port]
Max-Forwards: 70
Subject: Performance Test
Content-Length: 0

]]>
</send>

<recv response="200">
</recv>

And this is the end of the scenario:
</scenario>

Creating your own SIPp scenarios is not a big deal. If you want to see other examples, use the -sd parameter on the command line to display embedded scenarios.

3.7.2. Structure of server (UAS like) XML scenarios

A server scenario is a scenario that starts with a "recv" command. The syntax and the list of available commands is the same as for "client" scenarios.

But you are more likely to use [last_*] keywords in those server side scenarios. For example, a UAS example will look like:
<recv request="INVITE">
</recv>

SIPp

Page 33
Copyright © 2004,2005,2006 The authors All rights reserved.

<send>
<![CDATA[

SIP/2.0 180 Ringing
[last_Via:]
[last_From:]
[last_To:];tag=[call_number]
[last_Call-ID:]
[last_CSeq:]
Contact: <sip:[local_ip]:[local_port];transport=[transport]>
Content-Length: 0

]]>
</send>

The answering message, 180 Ringing in this case, is built with the content of headers received in the INVITE message.

3.7.3. Actions

In a "recv" or "recvCmd" command, you have the possibility to execute an action. Several actions are available:

• Regular expressions (ereg)
• Log something in aa log file (log)
• Execute an external (system), internal (int_cmd) or pcap_play_audio/pcap_play_video command (exec)

3.7.3.1. Regular expressions

Using regular expressions in SIPp allows to

• Extract content of a SIP message or a SIP header and store it for future usage (called re-injection)
• Check that a part of a SIP message or of an header is matching an expected expression

Regular expressions used in SIPp are defined per Posix Extended standard (POSIX 1003.2) (http://www.opengroup.org/onlinepubs/007908799/xbd/re.html) . If you
want to learn how to write regular expressions, I will recommend this regexp tutorial (http://analyser.oli.tudelft.nl/regex/index.html.en) .

Here is the syntax of the regexp action:

Keyword Default Description

regexp None Contains the regexp to use for
matching the received
message or header.
MANDATORY.

SIPp

Page 34
Copyright © 2004,2005,2006 The authors All rights reserved.

http://www.opengroup.org/onlinepubs/007908799/xbd/re.html
http://analyser.oli.tudelft.nl/regex/index.html.en

search_in msg can have 2 values: "msg" (try to
match against the entire
message) or "hdr" (try to match
against a specific SIP header).

header None Header to try to match against.
Only used when the search_in
tag is set to hdr. MANDATORY
IF search_in is equal to hdr.

check_it false if set to true, the call is marked
as failed if the regexp doesn't
match.

assign_to None contain the variable id (integer)
or a list of variable id which will
be used to store the result(s) of
the matching process between
the regexp and the message.
Those variables can be re-used
at a later time either by using
'[$n]' in the scenario to inject
the value of the variable in the
messages or by using the
content of the variables for
conditional branching. The first
variable in the variable list of
assign_to contains the entire
regular expression matching.
The following variables contain
the sub-expressions matching.
Example:
<ereg
regexp="o=([[:alnum:]]*)
([[:alnum:]]*)
([[:alnum:]]*)"
search_in="msg"
check_it=i"true"
assign_to="3,4,5,8"/>
If the SIP message contains
the line
o=user1 53655765

SIPp

Page 35
Copyright © 2004,2005,2006 The authors All rights reserved.

2353687637 IN IP4
127.0.0.1
variable 3 contains "o=user1
53655765 2353687637",
variable 4 contains "user1",
variable 5 contains "53655765"
and variable 8 contains
"2353687637".

Table 1: regexp action syntax
Note that you can have several regular expressions in one action.

The following example is used to:

• First action:
• Extract the first IPv4 address of the received SIP message
• Check that we could actually extract this IP address (otherwise call will be marked as failed)
• Assign the extracted IP address to call variables 1 and 2.

• Second action:
• Extract the Contact: header of the received SIP message
• Assign the extracted Contract: header to variable 6.

<recv response="200" start_rtd="true">
<action>
<ereg regexp="([0-9]{1,3}\.){3}[0-9]{1,3}:[0-9]*" search_in="msg" check_it="true" assign_to="1,2" />
<ereg regexp=".*" search_in="hdr" header="Contact:" check_it="true" assign_to="6" />

</action>
</recv>

3.7.3.2. Log a message

The "log" action allows you to customize your traces. Messages are printed in the <scenario file name>_<pid>_logs.log file. Any keyword is expanded to reflect the
value actually used.

Warning:
Logs are generated only if -trace_logs option is set on the command line.

SIPp

Page 36
Copyright © 2004,2005,2006 The authors All rights reserved.

Example:
<recv request="INVITE" crlf="true" rrs="true">
<action>

<ereg regexp=".*" search_in="hdr" header="Some-New-Header:" assign_to="1" />
<log message="From is [last_From]. Custom header is [$1]"/>

</action>
</recv>

3.7.3.3. Execute a command

The "exec" action allows you to execute "internal", "external", "play_pcap_audio" or "play_pcap_video" commands.

Internal commands

Internal commands (specified using int_cmd attribute) are stop_call, stop_gracefully (similar to pressing 'q'), stop_now (similar to ctrl+C).

Example that stops the execution of the script on receiving a 603 response:
<recv response="603" optional="true">
<action>

<exec int_cmd="stop_now"/>
</action>

</recv>

External commands

External commands (specified using command attribute) are anything that can be executed on local host with a shell.

Example that execute a system echo for every INVITE received:
<recv request="INVITE">
<action>

<exec command="echo [last_From] is the from header received >> from_list.log"/>
</action>

</recv>

PCAP (media) commands

PCAP play commands (specified using play_pcap_audio / play_pcap_video attributes) allow you to send a pre-recorded RTP stream using the pcap library
(http://www.tcpdump.org/pcap3_man.html) .

Choose play_pcap_audio to send the pre-recorded RTP stream using the "m=audio" SIP/SDP line port as a base for the replay.

SIPp

Page 37
Copyright © 2004,2005,2006 The authors All rights reserved.

http://www.tcpdump.org/pcap3_man.html

Choose play_pcap_video to send the pre-recorded RTP stream using the "m=video" SIP/SDP line port as a base.

The play_pcap_audio/video command has the following format: play_pcap_audio="[file_to_play]" with:

• file_to_play: the pre-recorded pcap file to play

Note:
The action is non-blocking. SIPp will start a light-weight thread to play the file and the scenario with continue immediately. If needed, you will need to add a pause to wait for the end of the pcap play.

Example that plays a pre-recorded RTP stream:
<nop>
<action>
<exec play_pcap_audio="pcap/g711a.pcap"/>

</action>
</nop>

3.7.4. Injecting values from an external CSV during calls

You can use "-inf file_name" as a command line parameter to input values into the scenarios. The first line of the file should say whether the data is to be read
in sequence (SEQUENTIAL) or random (RANDOM) order. Each line corresponds to one call and has one or more ';' delimited data fields and they can be referred as
[field0], [field1], ... in the xml scenario file. Example:
SEQUENTIAL
#This line will be ignored
Sarah;sipphone32
Bob;sipphone12
#This line too
Fred;sipphone94

Will be read in sequence (first call will use first line, second call second line). At any place where the keyword "[field0]" appears in the scenario file, it will be
replaced by either "Sarah", "Bob" or "Fred" depending on the call. At any place where the keyword "[field1]" appears in the scenario file, it will be replaced by either
"sipphone32" or "sipphone12" or "sipphone94" depending on the call. At the end of the file, SIPp will re-start from the beginning. The file is not limited in size.

The CSV file can contain comment lines. A comment line is a line that starts with a "#".

As a picture says more than 1000 words, here is one:

SIPp

Page 38
Copyright © 2004,2005,2006 The authors All rights reserved.

Think of the possibilities of this feature. They are huge.

3.7.5. Conditional branching in scenarios

It is possible to execute a scenario in a non-linear way. You can jump from one part of the scenario to another for example when a message is received or if a call
variable is set.

SIPp

Page 39
Copyright © 2004,2005,2006 The authors All rights reserved.

You define a label (in the xml) as <label id="n"/> Where n is a number between 1 and 19 (we can easily have more if needed). The label commands go
anywhere in the main scenario between other commands. To any action command (send, receive, pause, etc.) you add a next="n" parameter, where n matches the id of
a label. When it has done the command it continues the scenario from that label. This part is useful with optional receives like 403 messages, because it allows you
to go to a different bit of script to reply to it and then rejoin at the BYE (or wherever or not).

Alternatively, if you add a test="m" parameter to the next, it goes to the label only if variable [$m] is set. This allows you to look for some string in a received packet
and alter the flow either on that or a later part of the script.

Warning:
If you add special cases at the end, don’t forget to put a label at the real end and jump to it at the end of the normal flow.

Example:

The following example corresponds to the embedded 'branchc' (client side) scenario. It has to run against the embedded 'branchs' (server side) scenario.

SIPp

Page 40
Copyright © 2004,2005,2006 The authors All rights reserved.

SIPp

Page 41
Copyright © 2004,2005,2006 The authors All rights reserved.

3.7.6. SIP authentication

SIPp supports SIP authentication. Two authentication algorithm are supported: Digest/MD5 ("algorithm="MD5"") and Digest/AKA ("algorithm="AKAv1-MD5"", as

SIPp

Page 42
Copyright © 2004,2005,2006 The authors All rights reserved.

specified by 3GPP for IMS).

Warning:
To enable authentication support, SIPp must be compiled in a special way. See SIPp installation for details

Enabling authentication is simple. When receiving a 401 (Unauthorized) or a 407 (Proxy Authentication Required), you must add auth="true" in the <recv> command
to take the challenge into account. Then, the authorization header can be re-injected in the next message by using [authentication] keyword.

Computing the authorization header is done through the usage of the "[authentication]" keyword. Depending on the algorithm ("MD5" or "AKAv1-MD5"), different
parameters must be passed next to the authentication keyword:

• Digest/MD5 (example: [authentication username=joe password=schmo])
• username: username: if no username is specified, the username is taken from the '-s' (service) command line parameter
• password: password: if no password is specified, the password is taken from the '-ap' (authentication password) command line parameter

• Digest/AKA: (example: [authentication username=HappyFeet aka_OP=0xCDC202D5123E20F62B6D676AC72CB318
aka_K=0x465B5CE8B199B49FAA5F0A2EE238A6BC aka_AMF=0xB9B9])
• username: username: if no username is specified, the username is taken from the '-s' (service) command line parameter
• aka_K: Permanent secret key. If no aka_K is provided, the "password" attributed is used as aka_K.
• aka_OP: OPerator variant key
• aka_AMF: Authentication Management Field (indicates the algorithm and key in use)

In case you want to use authentication with a different username/password or aka_K for each call, you can do this:

• Make a CSV like this:
SEQUENTIAL
User0001;[authentication username=joe password=schmo]
User0002;[authentication username=john password=smith]
User0003;[authentication username=betty password=boop]

• And an XML like this (the [field1] will be substituted with the full auth string, which is the processed as a new keyword):
<send retrans="500">

<![CDATA[

REGISTER sip:[remote_ip] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
To: <sip:[field0]@sip.com:[remote_port]>
From: <sip:[field0]@[remote_ip]:[remote_port]>
Contact: <sip:[field0]@[local_ip]:[local_port]>;transport=[transport]
[field1]

SIPp

Page 43
Copyright © 2004,2005,2006 The authors All rights reserved.

Expires: 300
Call-ID: [call_id]
CSeq: 2 REGISTER
Content-Length: 0

]]>
</send>

Example:
<recv response="407" auth="true">
</recv>

<send>
<![CDATA[

ACK sip:[service]@[remote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>[peer_tag_param]
Call-ID: [call_id]
CSeq: 1 ACK
Contact: sip:sipp@[local_ip]:[local_port]
Max-Forwards: 70
Subject: Performance Test
Content-Length: 0

]]>
</send>

<send retrans="500">
<![CDATA[

INVITE sip:[service]@[remote_ip]:[remote_port] SIP/2.0
Via: SIP/2.0/[transport] [local_ip]:[local_port]
From: sipp <sip:sipp@[local_ip]:[local_port]>;tag=[call_number]
To: sut <sip:[service]@[remote_ip]:[remote_port]>
Call-ID: [call_id]
CSeq: 2 INVITE
Contact: sip:sipp@[local_ip]:[local_port]
[authentication username=foouser]
Max-Forwards: 70
Subject: Performance Test
Content-Type: application/sdp
Content-Length: [len]

SIPp

Page 44
Copyright © 2004,2005,2006 The authors All rights reserved.

v=0
o=user1 53655765 2353687637 IN IP[local_ip_type] [local_ip]
s=-
t=0 0
c=IN IP[media_ip_type] [media_ip]
m=audio [media_port] RTP/AVP 0
a=rtpmap:0 PCMU/8000

]]>
</send>

3.8. Screens

Several screens are available to monitor SIP traffic. You can change the screen view by pressing 1 to 9 keys on the keyboard.

• Key '1': Scenario screen. It displays a call flow of the scenario as well as some important informations.

SIPp

Page 45
Copyright © 2004,2005,2006 The authors All rights reserved.

• Key '2': Statistics screen. It displays the main statistics counters. The "Cumulative" column gather all statistics, since SIPp has been launched. The "Periodic"
column gives the statistic value for the period considered (specified by -f frequency command line parameter).

SIPp

Page 46
Copyright © 2004,2005,2006 The authors All rights reserved.

• Key '3': Repartition screen. It displays the distribution of response time and call length, as specified in the scenario.

SIPp

Page 47
Copyright © 2004,2005,2006 The authors All rights reserved.

• Key '4': Variables screen. It displays informations on actions in scenario as well as scenario variable informations.

SIPp

Page 48
Copyright © 2004,2005,2006 The authors All rights reserved.

3.9. Transport modes

SIPp has several transport modes. The default transport mode is "UDP mono socket".

3.9.1. UDP mono socket

SIPp

Page 49
Copyright © 2004,2005,2006 The authors All rights reserved.

In UDP mono socket mode (-t u1 command line parameter), one IP/UDP socket is opened between SIPp and the remote. All calls are placed using this socket.

This mode is generally used for emulating a relation between 2 SIP servers.

3.9.2. UDP multi socket

In UDP multi socket mode (-t un command line parameter), one IP/UDP socket is opened for each new call between SIPp and the remote.

This mode is generally used for emulating user agents calling a SIP server.

3.9.3. UDP with one socket per IP address

In UDP with one socket per IP address mode (-t ui command line parameter), one IP/UDP socket is opened for each IP address given in the inf file.

In addition to the "-t ui" command line parameter, one must indicate which field in the inf file is to be used as local IP address for this given call. Use "-ip_field <nb>"
to provide the field number.

There are two distinct cases to use this feature:

• Client side: when using -t ui for a client, SIPp will originate each call with a different IP address, as provided in the inf file. In this case, when your IP addresses
are in field X of the inject file, then you have to use [fieldX] instead of [local_ip] in your UAC XML scenario file.

• Server side: when using -t ui for a server, SIPp will bind itself to all the IP addresses listed in the inf file instead of using 0.0.0.0. This will have the effect SIPp
will answer the request on the same IP on which it received the request. In order to have proper Contact and Via fields, a keyword [server_ip] can be used and
provides the IP address on which a request was received. So when using this, you have to replace the [local_ip] in your UAS XML scenario file by [server_ip].

In the following diagram, the command line for a client scenario will look like: ./sipp -sf myscenario.xml -t ui -inf database.csv
-ip_field 2 192.168.1.1
By doing so, each new call will come sequentially from IP 192.168.0.1, 192.168.0.2, 192.168.0.3, 192.168.0.1, ...

SIPp

Page 50
Copyright © 2004,2005,2006 The authors All rights reserved.

This mode is generally used for emulating user agents, using on IP address per user agent and calling a SIP server.

3.9.4. TCP mono socket

In TCP mono socket mode (-t t1 command line parameter), one IP/TCP socket is opened between SIPp and the remote. All calls are placed using this socket.

This mode is generally used for emulating a relation between 2 SIP servers.

3.9.5. TCP multi socket

SIPp

Page 51
Copyright © 2004,2005,2006 The authors All rights reserved.

In TCP multi socket mode (-t tn command line parameter), one IP/TCP socket is opened for each new call between SIPp and the remote.

This mode is generally used for emulating user agents calling a SIP server.

3.9.6. TCP reconnections

SIPp handles TCP reconnections. In case the TCP socket is lost, SIPp will try to reconnect. The following parameters on the command line control this behaviour:

• -max_reconnect: Set the the maximum number of reconnection.
• -reconnect_close true/false: Should calls be closed on reconnect?
• -reconnect_sleep int: How long to sleep between the close and reconnect?

3.9.7. TLS mono socket

In TLS mono socket mode (-t l1 command line parameter), one secured TLS (Transport Layer Security) socket is opened between SIPp and the remote. All calls
are placed using this socket.

This mode is generally used for emulating a relation between 2 SIP servers.

Warning:
When using TLS transport, SIPp will expect to have two files in the current directory: a certificate (cacert.pem) and a key (cakey.pem). If one is protected with a password, SIPp will ask for it.

SIPp supports X509's CRL (Certificate Revocation List). The CRL is read and used if -tls_crl command line specifies a CRL file to read.

3.9.8. TLS multi socket

In TLS multi socket mode (-t ln command line parameter), one secured TLS (Transport Layer Security) socket is opened for each new call between SIPp and the
remote.

This mode is generally used for emulating user agents calling a SIP server.

3.9.9. IPv6 support

SIPp includes IPv6 support. To use IPv6, just specify the local IP address (-i command line parameter) to be an IPv6 IP address.

The following example launches a UAS server listening on port 5063 and a UAC client sending IPv6 traffic to that port.

SIPp

Page 52
Copyright © 2004,2005,2006 The authors All rights reserved.

./sipp -sn uas -i [fe80::204:75ff:fe4d:19d9] -p 5063

./sipp -sn uac -i [fe80::204:75ff:fe4d:19d9] [fe80::204:75ff:fe4d:19d9]:5063

3.9.10. Multi-socket limit

When using one of the "multi-socket" transports, the maximum number of sockets that can be opened (which corresponds to the number of simultaneous calls) will be
determined by the system (see how to increase file descriptors section to modify those limits). You can also limit the number of socket used by using the
-max_socket command line option. Once the maximum number of opened sockets is reached, the traffic will be distributed over the sockets already opened.

3.10. Handling media with SIPp

SIPp is originally a signalling plane traffic generator. There is a limited support of media plane (RTP).

3.10.1. RTP echo

The "RTP echo" feature allows SIPp to listen to one or two local IP address and port (specified using -mi and -mp command line parameters) for RTP media.
Everything that is received on this address/port is echoed back to the sender.

RTP/UDP packets coming on this port + 2 are also echoed to their sender (used for sound and video echo).

3.10.2. PCAP Play

The PCAP play feature makes use of the PCAP library (http://www.tcpdump.org/pcap3_man.html) to replay pre-recorded RTP streams towards a destination. RTP
streams can be recorded by tools like Wireshark (http://www.wireshark.org/) (formerly known as Ethereal) or tcpdump (http://www.tcpdump.org/) . This allows you
to:

• Play any RTP stream (voice, video, voice+video, out of band DTMFs/RFC 2833, T38 fax, ...)
• Use any codec as the codec is not handled by SIPp
• Emulate precisely the behavior of any SIP equipment as the pcap play will try to replay the RTP stream as it was recorded (limited to the performances of the

system).
• Reproduce exactly what has been captured using an IP sniffer like Wireshark (http://www.wireshark.org/) .

A good example is the UAC with media (uac_pcap) embedded scenario.

SIPp comes with a G711 alaw pre-recorded pcap file and out of band (RFC 2833) DTMFs in the pcap/ directory.

Warning:

SIPp

Page 53
Copyright © 2004,2005,2006 The authors All rights reserved.

http://www.tcpdump.org/pcap3_man.html
http://www.wireshark.org/
http://www.tcpdump.org/
http://www.wireshark.org/

The PCAP play feature uses pthread_setschedparam calls from pthread library. Depending on the system settings, you might need to be root to allow this. Please check "man 3 pthread_setschedparam" man page for details

More details on the possible PCAP play actions can be found in the action reference section.

The latest info on this feature, tips and tricks can be found on SIPp wiki (http://sipp.sourceforge.net/wiki/index.php/Pcapplay) .

3.11. Exit codes

To ease automation of testing, upon exit (on fatal error or when the number of asked calls (-m command line option) is reached, sipp exits with one of the following
exit codes:

• 0: All calls were successful
• 1: At least one call failed
• 97: exit on internal command. Calls may have been processed
• 99: Normal exit without calls processed
• -1: Fatal error

Depending on the system that SIPp is running on, you can echo this exit code by using "echo ?" command.

3.12. Statistics

3.12.1. Response times

Response times can be gathered and reported. SIPp has 5 timers (the number is set at compile time) used to compute time between two SIPp commands (send, recv or
nop). You can start a timer by using the start_rtd attribute and stop it using the rtd attribute.

You can view the value of those timers in the SIPp interface by pressing 3, 6, 7, 8 or 9. You can also save the values in a CSV file using the -trace_stat option (see
below).

3.12.2. Available counters

The -trace_stat option dumps all statistics in the scenario_name_pid.csv file. The dump starts with one header line with all counters. All following lines are
'snapshots' of statistics counter given the statistics report frequency (-fd option). When SIPp exits, the last values of the statistics are also dumped in this file.

This file can be easily imported in any spreadsheet application, like Excel.

In counter names, (P) means 'Periodic' - since last statistic row and (C) means 'Cumulated' - since sipp was started.

SIPp

Page 54
Copyright © 2004,2005,2006 The authors All rights reserved.

http://sipp.sourceforge.net/wiki/index.php/Pcapplay

Available statistics are:

• StartTime: Date and time when the test has started.
• LastResetTime: Date and time when periodic counters where last reseted.
• CurrentTime: Date and time of the statistic row.
• ElapsedTime: Elapsed time.
• CallRate: Call rate (calls per seconds).
• IncomingCall: Number of incoming calls.
• OutgoingCall: Number of outgoing calls.
• TotalCallCreated: Number of calls created.
• CurrentCall: Number of calls currently ongoing.
• SuccessfulCall: Number of successful calls.
• FailedCall: Number of failed calls (all reasons).
• FailedCannotSendMessage: Number of failed calls because Sipp cannot send the message (transport issue).
• FailedMaxUDPRetrans: Number of failed calls because the maximum number of UDP retransmission attempts has been reached.
• FailedUnexpectedMessage: Number of failed calls because the SIP message received is not expected in the scenario.
• FailedCallRejected: Number of failed calls because of Sipp internal error. (a scenario sync command is not recognized or a scenario action failed or a scenario

variable assignment failed).
• FailedCmdNotSent: Number of failed calls because of inter-Sipp communication error (a scenario sync command failed to be sent).
• FailedRegexpDoesntMatch: Number of failed calls because of regexp that doesn't match (there might be several regexp that don't match during the call but the

counter is increased only by one).
• FailedRegexpHdrNotFound: Number of failed calls because of regexp with hdr option but no matching header found.
• OutOfCallMsgs: Number of SIP messages received that cannot be associated with an existing call.
• AutoAnswered: Number of unexpected specific messages received for new Call-ID. The message has been automatically answered by a 200 OK Currently,

implemented for 'PING' message only.

In addition, two other statistics are gathered:

• ResponseTime (see previous section)
• CallLength: this is the time of the duration of an entire call.

Both ResponseTime and CallLength statistics can be tuned using ResponseTimeRepartition and CallLengthRepartition commands in the scenario.

3.12.3. Importing statistics in spreadsheet applications

SIPp

Page 55
Copyright © 2004,2005,2006 The authors All rights reserved.

3.12.3.1. Example: importation in Microsoft Excel

Here is a video (Windows Media Player 9 codec or above required) on how to import CSV statistic files in Excel and create a graph of failed calls over time.

sipp-02.wmv (images/sipp-02.wmv)

3.13. Error handling

SIPp has advanced feature to handle errors and unexpected events. They are detailed in the following sections.

3.13.1. Unexpected messages

• When a SIP message that can be correlated to an existing call (with the Call-ID: header) but is not expected in the scenario is received, SIPp will send a
CANCEL message if no 200 OK message has been received or a BYE message if a 200 OK message has been received. The call will be marked as failed. If the
unexpected message is a 4XX or 5XX, SIPp will send an ACK to this message, close the call and mark the call as failed.

• When a SIP message that can't be correlated to an existing call (with the Call-ID: header) is received, SIPp will send a BYE message. The call will not be
counted at all.

• When a SIP "PING" message is received, SIPp will send an ACK message in response. This message is not counted as being an unexpected message. But it is
counted in the "AutoAnswered" statistic counter.

• An unexpected message that is not a SIP message will be simply dropped.

3.13.2. Retransmissions (UDP only)

A retransmission mechanism exists in UDP transport mode. To activate the retransmission mechanism, the "send" command must include the "retrans" attribute.

When it is activated and a SIP message is sent and no ACK or response is received in answer to this message, the message is re-sent.

Note:
The retransmission mechanism follows RFC 3261, section 17.1.1.2. Retransmissions are differentiated between INVITE and non-INVITE methods.

<send retrans="500">: will initiate the T1 timer to 500 milliseconds.

Even if retrans is specified in your scenarios, you can override this by using the -nr command line option to globally disable the retransmission mechanism.

3.13.3. Log files (error + log + screen)

SIPp

Page 56
Copyright © 2004,2005,2006 The authors All rights reserved.

images/sipp-02.wmv

There are several ways to trace what is going on during your SIPp runs.

• You can log sent and received SIP messages in <name_of_the_scenario>_<pid>_messages.log by using the command line parameter -trace_msg. The
messages are time-stamped so that you can track them back.

• You can trace all unexpected messages or events in <name_of_the_scenario>_<pid>_errors.log by using the command line parameter -trace_err.
• You can save in a file the statistics screens, as displayed in the interface. This is especially useful when running SIPp in background mode.

This can be done in two ways:
• When SIPp exits to get a final status report (-trace_screen option)
• On demand by using USR2 signal (example: kill -SIGUSR2 738)

• You can log all call ids for calls that timeout (the maximum number of retransmissions for UDP transport is reached) by using the command line parameter
-trace_timeout

3.14. Online help (-h)

The online help, available through the -h option is duplicated here for your convenience
Usage:

sipp remote_host[:remote_port] [options]

Available options:

-v : Display version and copyright information.

-bg : Launch SIPp in background mode.

-p local_port : Set the local port number. Default is a
random free port chosen by the system.

-buff_size buff_size: Set the send and receive buffer size.

-i local_ip : Set the local IP address for 'Contact:',
'Via:', and 'From:' headers. Default is
primary host IP address.

-bind_local : Bind socket to local IP address, i.e. the local IP
address is used as the source IP address.
If SIPp runs in server mode it will only listen on the
local IP address instead of all IP addresses.

-inf file_name : Inject values from an external CSV file during calls

SIPp

Page 57
Copyright © 2004,2005,2006 The authors All rights reserved.

into the scenarios.
First line of this file say whether the data is
to be read in sequence (SEQUENTIAL) or random
(RANDOM) order.
Each line corresponds to one call and has one or
more ';' delimited data fields. Those fields can be
referred as [field0], [field1], ... in the xml
scenario file.

-d duration : Controls the length (in milliseconds) of
calls. More precisely, this controls
the duration of 'pause' instructions in
the scenario, if they do not have a
'milliseconds' section. Default value is 0.

-r rate (cps) : Set the call rate (in calls per seconds).
This value can be changed during test by
pressing '+','_','*' or '/'. Default is 10.
pressing '+' key to increase call rate by 1,
pressing '-' key to decrease call rate by 1,
pressing '*' key to increase call rate by 10,
pressing '/' key to decrease call rate by 10.
If the -rp option is used, the call rate is
calculated with the period in ms given
by the user.

-rp period (ms) : Specify the rate period in milliseconds for the call
rate.
Default is 1 second.
This allows you to have n calls every m milliseconds
(by using -r n -rp m).
Example: -r 7 -rp 2000 ==> 7 calls every 2 seconds.

-rate_increase : Specify the rate increase every -fd seconds
This allows you to increase the load for each
independent logging period
Example: -rate_increase 10 -fd 10
==> increase calls by 10 every 10 seconds.

-rate_max : If -rate_increase is set, then quit after the rate
reaches this value.
Example: -rate_increase 10 -max_rate 100
==> increase calls by 10 until 100 cps is hit.

-max_socket max : Set the max number of sockets to open simultaneously.
This option is significant if you use one socket

SIPp

Page 58
Copyright © 2004,2005,2006 The authors All rights reserved.

per call. Once this limit is reached, traffic is
distributed over the sockets already opened.
Default value is 50000.

-timer_resol : Set the timer resolution in milliseconds.
This option has an impact on timers precision.
Small values allow more precise scheduling but
impacts CPU usage.
If the compression is on, the value is set to 50ms.
The default value is 200ms.

-max_recv_loops : Set the maximum number of messages received read per
cycle. Increase this value for high traffic level.
The default value is 1000.

-up_nb : Set the number of updates of the internal clock during
the reading of received messages.
Default value is 1.

-base_cseq n : Start value of [cseq] for each call.

-cid_str string : Call ID string (default %u-%p@%s).
%u=call_number, %s=ip_address, %p=process_number,
%%=% (in any order).

-auth_uri uri : Force the value of the URI for authentication.
By default, the URI is composed of
remote_ip:remote_port.

-sf filename : Loads an alternate xml scenario file.
To learn more about XML scenario syntax,
use the -sd option to dump embedded
scenarios. They contain all the necessary
help.

-sn name : Use a default scenario (embedded in
the sipp executable). If this option is omitted,
the Standard SipStone UAC scenario is loaded.
Available values in this version:

'uac' : Standard SipStone UAC (default).
'uac_pcap' : Standard SipStone UAC with pcap

play (RTP)
'uas' : Simple UAS responder.
'regexp' : Standard SipStone UAC - with

regexp and variables.

SIPp

Page 59
Copyright © 2004,2005,2006 The authors All rights reserved.

'branchc' : Branching and conditional
branching in scenarios - client.

'branchs' : Branching and conditional
branching in scenarios - server.

Default 3pcc scanerios (see -3pcc option):

'3pcc-C-A' : Controller A side (must be started
after all other 3pcc scenarios)

'3pcc-C-B' : Controller B side.
'3pcc-A' : A side.
'3pcc-B' : B side.

-ip_field nr : Set which field from the injection file contains the
IP address from which the client will send its
messages.
If this option is omitted and the '-t ui' option is
present, then field 0 is assumed.
Use this option together with '-t ui'

-sd name : Dumps a default scenario (embeded in
the sipp executable)

-t [u1|un|ui|t1|tn|l1|ln] : Set the transport mode:

u1: UDP with one socket (default),
un: UDP with one socket per call,
ui: UDP with one socket per IP address

The IP addresses must be defined in the
injection file.

t1: TCP with one socket,
tn: TCP with one socket per call,
l1: TLS with one socket,
ln: TLS with one socket per call.

-trace_msg : Displays sent and received SIP messages in
<scenario file name>_<pid>_messages.log

-trace_screen : Dump statistic screens in the
<scenario_name>_<pid>_screens.log file when
quitting SIPp. Useful to get a final status report
in background mode (-bg option).

-trace_timeout : Displays call ids for calls with timeouts in
<scenario file name>_<pid>_timeout.log

-trace_stat : Dumps all statistics in <scenario_name>_<pid>.csv

SIPp

Page 60
Copyright © 2004,2005,2006 The authors All rights reserved.

file. Use the '-h stat' option for a detailed
description of the statistics file content.

-stf file_name : Set the file name to use to dump statistics

-stat_delimiter string : Set the delimiter for the statistics file

-trace_err : Trace all unexpected messages in
<scenario file name>_<pid>_errors.log.

-trace_logs : Allow tracing of <log> actions in
<scenario file name>_<pid>_logs.log.

-trace_rtt : Allow tracing of all response times in
<scenario file name>_<pid>_rtt.csv.

-rtt_freq freq : freq is mandatory. Dump response times
every freq calls in the log file defined
by -trace_rtt. Default value is 200.

-s service_name : Set the username part of the resquest URI.
Default is 'service'.

-ap password : Set the password for authentication challenges.
Default is 'password'

-tls_cert name : Set the name for TLS Certificate file.
Default is 'cacert.pem'

-tls_key name : Set the name for TLS Private Key file.
Default is 'cakey.pem'

-tls_crl name : Set the name for Certificate Revocation List file.
If not specified, X509 CRL is not activated.

-f frequency : Set the statistics report frequency on screen
(in seconds). Default is 1.

-fd frequency : Set the statistics dump log report frequency
(in seconds). Default is 60.

-l calls_limit : Set the maximum number of simultaneous
calls. Once this limit is reached, traffic
is decreased until the number of open calls
goes down. Default:

SIPp

Page 61
Copyright © 2004,2005,2006 The authors All rights reserved.

(3 * call_duration (s) * rate).

-m calls : Stop the test and exit when 'calls' calls are
processed.

-rtp_echo : Enable RTP echo. RTP/UDP packets received
on port defined by -mp are echoed to their
sender.
RTP/UDP packets coming on this port + 2
are also echoed to their sender (used for
sound and video echo).

-mp media_port : Set the local RTP echo port number. Default
is 6000.

-mi local_rtp_ip : Set the local media IP address.

-mb buf_size : Set the RTP echo buffer size (default: 2048).

-3pcc ip:port : Launch the tool in 3pcc mode ("Third Party
call control"). The passed ip address
is depending on the 3PCC role.
- When the first twin command is 'sendCmd' then
this is the address of the remote twin socket.
SIPp will try to connect to this address:port to
send the twin command (This instance must be started
after all other 3PCC scenarii).
Example: 3PCC-C-A scenario.
- When the first twin command is 'recvCmd' then
this is the address of the local twin socket. SIPp
will open this address:port to listen for twin command.
Example: 3PCC-C-B scenario.

-master : 3pcc extended mode: indicates the name of the twin sipp
instance (if master)

-slave : 3pcc extended mode: indicates the name of the twin sipp
instance (if slave)

-slave_cfg : 3pcc extended mode: indicates the file where the master
and slave addresses are stored. This option
must be set in the command line before the -sf option

-nr : Disable retransmission in UDP mode.

-max_retrans : Maximum number of UDP retransmissions before call

SIPp

Page 62
Copyright © 2004,2005,2006 The authors All rights reserved.

ends on timeout.
Default is 5 for INVITE transactions and 7 for
others.

-recv_timeout nb : Global receive timeout in milliseconds.
If the expected message is not received, the call
times out and is aborted

-timeout nb : Global timeout in seconds.
If this option is set, SIPp quits after nb seconds

-nd : No Default. Disable all default behavior of SIPp
which are the following:
- On UDP retransmission timeout, abort the call by
sending a BYE or a CANCEL
- On receive timeout with no ontimeout attribute,
abort the call by sending a BYE or a CANCEL
- On unexpected BYE send a 200 OK and close the call
- On unexpected CANCEL send a 200 OK and close the call
- On unexpected PING send a 200 OK and continue the call
- On any other unexpected message, abort the call by
sending a BYE or a CANCEL

-pause_msg_ign : Ignore the messages received during a pause defined
in the scenario

-rsa host[:port] : Set the remote sending address to host:port.
for sending the messages.

-max_reconnect : Set the the maximum number of reconnection.

-reconnect_close true/false: Should calls be closed on reconnect?

-reconnect_sleep int : How long to sleep between the close and reconnect?

-aa : Enable automatic 200 OK answer for INFO and NOTIFY
messages.

-tdmmap map : Generate and handle a table of TDM circuits.
A circuit must be available for the call to be placed.
Format: -tdmmap {0-3}{99}{5-8}{1-31}

-key keyword value : Set the generic parameter named "keyword" to "value".

Signal handling:

SIPp

Page 63
Copyright © 2004,2005,2006 The authors All rights reserved.

SIPp can be controlled using posix signals. The following signals
are handled:
USR1: Similar to press 'q' keyboard key. It triggers a soft exit

of SIPp. No more new calls are placed and all ongoing calls
are finished before SIPp exits.
Example: kill -SIGUSR1 732

USR2: Triggers a dump of all statistics screens in
<scenario_name>_<pid>_screens.log file. Especially useful
in background mode to know what the current status is.
Example: kill -SIGUSR2 732

Exit code:

Upon exit (on fatal error or when the number of asked calls (-m
option) is reached, sipp exits with one of the following exit
code:
0: All calls were successful
1: At least one call failed
97: exit on internal command. Calls may have been processed
99: Normal exit without calls processed
-1: Fatal error

Example:

Run sipp with embedded server (uas) scenario:
./sipp -sn uas

On the same host, run sipp with embedded client (uac) scenario
./sipp -sn uac 127.0.0.1

4. Performance testing with SIPp

4.1. Advices to run performance tests with SIPp

SIPp has been originally designed for SIP performance testing. Reaching high call rates and/or high number of simultaneous SIP calls is possible with SIPp, provided
that you follow some guidelines:

• Use an HP-UX, Linux or other *ix system to reach high performances. The Windows port of SIPp (through CYGWIN) cannot handle high performances.
• Limit the traces to a minimum (usage of -trace_msg, -trace_logs should be limited to scenario debugging only)

SIPp

Page 64
Copyright © 2004,2005,2006 The authors All rights reserved.

• To reach a high number of simultaneous calls in multi-socket mode, you must increase the number of filedescriptors handled by your system. Check "Increasing
File Descriptors Limit" section for more details.

• Understand internal SIPp's scheduling mechanism and use the -timer_resol, -max_recv_loops and -up_nb command line parameters to tune SIPp given the system
it is running on.

Generally, running performance tests also implies measuring response times. You can use SIPp's timers (start_rtd, rtd in scenarios and -trace_rtt command line option)
to measure those response times. The precision of those measures are entirely dependent on the timer_resol parameter (as described in "SIPp's internal scheduling"
section). You might want to use another "objective" method if you want to measure those response times with a high precision (a tool like Wireshark
(http://www.wireshark.org/) will allow you to do so).

4.2. SIPp's internal scheduling

Three parameters can be set to allow SIPp to benefit of the hardware it is running on. Tuning those parameters will also reduce the risk of unwanted retransmissions at
high call rates.

Let's first describe SIPp's main scheduling loop:
+-->---+
| |
| Management of new calls (creation of new calls if needed ...):
| | ->done every time
| |
| Management of ongoing calls (calculate wait, retransmissions ...):
| | ->done every "timer_resol" ms at best
| |
| Management of received messages:
| | ->done every time, "max_recv_loops" messages are read at the very most
| |
| Management of statistics:
| | ->done every time
| |
+--<---+

Several parameters can be specified on the command line to fine tune this scheduling.

• timer_resol: during the main loop, the management of calls (management of wait, retransmission ...) is done for all calls, every "timer_resol" ms at best. The delay
of retransmission must be higher than "timer_resol". This parameter can be reduce to reduce retransmissions. If other treatments in SIPp are too long,
"timer_resol" can not be respected. Reduce "max_recv_loops" to reduce retransmissions.

• max_recv_loops and up_nb: received messages are read and treated in batch. "max_recv_loops" is the maximum number of messages that can be read at one time.
During this treatment, internal clock ("clock_tick") is updated every "max_recv_loops/up_nb" read messages. For heavy call rate, reduce "max_recv_loops" and/or
increase "up_nb" to limit the retransmissions. Be careful, those two parameters have a large influence on the CPU occupation of SIPp.

SIPp

Page 65
Copyright © 2004,2005,2006 The authors All rights reserved.

http://www.wireshark.org/

5. Useful tools aside SIPp

5.1. JEdit

JEdit (http://www.jedit.org/) is a GNU GPL text editor written in Java, and available on almost all platforms. It's extremely powerful and can be used to edit SIPp
scenarios with syntax checking if you put the DTD (sipp.dtd (http://sipp.sourceforge.net/doc/sipp.dtd)) in the same directory as your XML scenario.

5.2. Wireshark/tshark

Wireshark (http://www.wireshark.org/) is a GNU GPL protocol analyzer. It was formerly known as Ethereal. It supports SIP/SDP/RTP.

5.3. SIP callflow

When tracing SIP calls, it is very useful to be able to get a call flow from an wireshark trace. The "callflow" tool allows you to do that in a graphical way:
http://callflow.sourceforge.net/

An equivalent exist if you want to generate HTML only call flows http://www.iptel.org/~sipsc/

6. Getting support

You can likely get email-based support from the sipp users community. The mailing list address is sipp-users@lists.sourceforge.net
(mailto:sipp-users@lists.sourceforge.net) . To protect you from SPAM, this list is restricted (only people that actually subscribed can post). Also, you can browse the
SIPp mailing list archive: http://lists.sourceforge.net/lists/listinfo/sipp-users

7. Contributing to SIPp

Of course, we welcome contributions! If you created a feature for SIPp, please send the "diff" output (diff -bruN old_sipp_directory
new_sipp_directory) on the SIPp mailing list (http://lists.sourceforge.net/lists/listinfo/sipp-users) , so that we can review and possibly integrate it in SIPp.

SIPp

Page 66
Copyright © 2004,2005,2006 The authors All rights reserved.

http://www.jedit.org/
http://sipp.sourceforge.net/doc/sipp.dtd
http://www.wireshark.org/
http://callflow.sourceforge.net/
http://www.iptel.org/~sipsc/
mailto:sipp-users@lists.sourceforge.net
http://lists.sourceforge.net/lists/listinfo/sipp-users
http://lists.sourceforge.net/lists/listinfo/sipp-users

	1 Foreword
	2 Installation
	2.1 Getting SIPp
	2.2 Stable release
	2.3 Unstable release
	2.4 Available platforms
	2.5 Installing SIPp
	2.6 Increasing File Descriptors Limit

	3 Using SIPp
	3.1 Main features
	3.2 Integrated scenarios
	3.2.1 UAC
	3.2.2 UAC with media
	3.2.3 UAS
	3.2.4 regexp
	3.2.5 branch
	3.2.6 3PCC

	3.3 3PCC Extended
	3.4 Traffic control
	3.5 Remote control
	3.6 Running SIPp in background
	3.7 Create your own XML scenarios
	3.7.1 Structure of client (UAC like) XML scenarios
	3.7.2 Structure of server (UAS like) XML scenarios
	3.7.3 Actions
	3.7.3.1 Regular expressions
	3.7.3.2 Log a message
	3.7.3.3 Execute a command
	3.7.3.3.1 Internal commands
	3.7.3.3.2 External commands
	3.7.3.3.3 PCAP (media) commands

	3.7.4 Injecting values from an external CSV during calls
	3.7.5 Conditional branching in scenarios
	3.7.6 SIP authentication

	3.8 Screens
	3.9 Transport modes
	3.9.1 UDP mono socket
	3.9.2 UDP multi socket
	3.9.3 UDP with one socket per IP address
	3.9.4 TCP mono socket
	3.9.5 TCP multi socket
	3.9.6 TCP reconnections
	3.9.7 TLS mono socket
	3.9.8 TLS multi socket
	3.9.9 IPv6 support
	3.9.10 Multi-socket limit

	3.10 Handling media with SIPp
	3.10.1 RTP echo
	3.10.2 PCAP Play

	3.11 Exit codes
	3.12 Statistics
	3.12.1 Response times
	3.12.2 Available counters
	3.12.3 Importing statistics in spreadsheet applications
	3.12.3.1 Example: importation in Microsoft Excel

	3.13 Error handling
	3.13.1 Unexpected messages
	3.13.2 Retransmissions (UDP only)
	3.13.3 Log files (error + log + screen)

	3.14 Online help (-h)

	4 Performance testing with SIPp
	4.1 Advices to run performance tests with SIPp
	4.2 SIPp's internal scheduling

	5 Useful tools aside SIPp
	5.1 JEdit
	5.2 Wireshark/tshark
	5.3 SIP callflow

	6 Getting support
	7 Contributing to SIPp

