

SIP Scenario Generator
White Paper Part 2

Detailed Output Description

and
Theory of Operation

By: Ray Elliott
Email: ray.elliott@ipc.com
Web: http://www.ipc.com

Filename: SipScenarioPart2.doc Revision: v2.0 Page 1 of 19

mailto:ray.Elliott@ipc.com
http://www.ipc.com/

Generated Files
The basic structure of the output information is split into four sections:

Header
SIP Scenario Body
SIP Message Details
Summary Information

Here is an example of the information.

Header
Section

Detailed
Section
contains
traced

SIP
Message

Scenario
Section

Summary
Section

The title in the header can be specified.
The summary section can be suppressed by a command option.

Related Command Arguments
-t[itile]:TITLE Defines the Title in the header Section
 -title:Attended Transfer
-stat:Enable=1/Disable=0 Enables/Disable Statistics in the summary

section
-stat:1

Filename: SipScenarioPart2.doc Revision: v2.0 Page 2 of 19

There are three different formats produced two are html based and one is a text format. All three
formats are generated by default.

Triple Frame HTML File
Single HTML File
Plain Text File

Triple Frame Html Files
The triple frame html package contains two files.

• The index html file was design as the target URL to be used by the browser. The index html file
creates three frames, header (top) frame, scenario (middle) frame, and detail message (bottom)
frame, where each frame references the same file, but at different locations. The default size of
the third frame can be changed. The default size is 33%.
“_index.html” is appended to the filename to create the index filename.
Related Command Arguments
-percent:DefaultSize Defines the default Spacing for the bottom

HTML frame in percent.
eg. –percent:33 for 33%.

-keep:bitValue Bit 0 (value 1) Enables Triple Frame Output
• The basic html file is to be called from the index html file and contains all the SIP Scenario

information about the capture file. The hyperlinks from the sip scenario section references the
bottom frame (by target="bottom"). This results in clicking the hyperlinks in middle frame
changes the location of the file in the bottom frame.
Typically this file should have been in a subdirectory, but it was decided that creating
subdirectories in user directories was not desired. If the basic html file is directly used by the
browser (instead of the index file), then the hyperlinks will target a frame that is not defined.
When the hyperlinks are clicked then sometimes no action take places or sometimes, the
browser will create a new window where the SIP messages will be displayed.
 “_indexhtml.html” is appended to the filename to create the basic html filename.

Filename: SipScenarioPart2.doc Revision: v2.0 Page 3 of 19

Hyperlinks in the
middle frame
change the location
of the file in the
bottom frame so the
the bottom frame
will point to the
appropiate SIP
message

Capture filename: attendedTransfer.dump
Index Html File: attendedTransfer_index.html
Basic Html File: attendedTransfer_indexhtml.html

Three Frames
pointing to the same
file at different
locations

Vertical Size of the
third frame. There is
an option to change
this size. The
Default size is 33%

Filename: SipScenarioPart2.doc Revision: v2.0 Page 4 of 19

Single Html File
The single html file was design as the target URL to be used by the browser and is identical to basic
html file with the exception that the references to the bottom frame (target="bottom") are removed.
“.html” is appended to the filename for the single filename.

Related Command Arguments
-keep:bitValue Bit 1 (value 2) Enables Single HTML Output

Hyperlinks in the
change the location
of the file appropiate
SIP message will
appear in this frame

Capture filename: attendedTransfer.dump

Single Html File: attendedTransfer.html

Plain Html File
The Plain text file is generated by removing all the html syntax from the file. The following is an extract
from the plain text file.
“.txt” is appended to the filename to create the plain text filename.

Related Command Arguments
-keep:bitValue Bit 2 (value 4) Enables Plain Text Output
 Bit 0 (value 1) Enables Triple Frame Output
 Bit 1 (value 2) Enables Single HTML Output

Oring bit values together define the set of file
that are generated. The default value of 7
generates all three output types.

Filename: SipScenarioPart2.doc Revision: v2.0 Page 5 of 19

UA Representation
The basic idea was that each IP Address represented a SIP UA, whether it was a proxy, gateway, or
other SIP devices. Each column represents a SIP UA, at an IP address. The column will be label by
the respective IP address. In addition to an IP address, an alias may be assigned to that IP address.
This alias will also be displayed as a part of the column header.
Each is Sip message is indicated by arrow between two columns, a SIP UAC and a SIP UAS. The
arrow will have a descriptor that contains the SIP request or the SIP response. Other information can
be added to the description field such as SDP (indicating that an SDP was attached) or hold (if an
attached SDP indicates hold). The length of the description field should fit between the two columns. If
the description does not fit between the two columns then a warning message will indicate what the
spacing (gap) between the columns should be so that the description field will fit.

Multiple SIP UAs on the same IP address
There have been several different SIP configurations that have multiple SIP UAs at a single IP
address. This same situation occurs when SIP phones are on one side of a firewall and the
proxy is on the other side. SIP message are traced at the SIP proxy. The NAT part of the
firewall changed the IP address and ports numbers so that the two phone where at the same IP
address, but at a different port. If SIP messages for different UAs at the same IP address can
be correctly identified with the correct SIP UA, then this SIP UA will have a column identified by
an IP address and received port number. An alias can also be associated with an IP address
and port number.
Many SIP UAs, when sending UDP packets, do not send the UDP packet from the same port
where UDP packet received. Typically all UDP packets are received on port 5060. Many UAs
do not send UDP packets on port 5060 for some reason or another. It becomes very difficult
when looking a packet trace to reliably associate the port number where are sent with the port
number where packets are received. This also holds true for TCP packets.

Symmetric UDP Port Detection

Filename: SipScenarioPart2.doc Revision: v2.0 Page 6 of 19

If UDP packets are sent using the same port number (symmetric UDP ports) for a given UA,
then there is a way to reliably determine the receive port related to a send SIP message – they
are the same number.
The detection mechanism is very easy and conservative. A more extensive mechanism is
possible, but the benefits are questionable. The rules are simple:

• All SIP MSGs from the same UA are sent on the same send/receive UDP ports.
• All SIP MSGs from all UAs are sent on UDP ports.

Or in other terms
There cannot exist

• A TCP packet to the IP address
• A UDP packet transmitted from a port, where the port has not received a UDP packet.

When a symmetric UDP port has been detected, then the column heading description will
contain the IP address and the port number.
Symmetric UDP port identification can be suppressed globally or by IP address.

Related Command Arguments
IPADDRESS[:PORT][/ALIAS][:COLUMN][:SINGLEUA] where

IPADDRESS An Ipv4 address in dotted notation.
eg 192.168.10.3

PORT The port number for the UA when there are
more than one UA at an IP address.

ALIAS Defines an ALIAS of the IP address that
appears at the column heading.

COLUMN Defines which column for the UA. Column
numbers should be used in an increasing
sequence.

SINGLEUA Disable Multiple UA detection for that IP
address

192.168.2.3/gateway:1:singleua Forces a single column for ip address
192.168.2.3. Assigns alias “gateway” to IP
address 192.168.2.3. which is forced into
column 1.

192.168.2.4:5062/ATMgateway:2 Assigns alias “ATMgateway” to the UA at IP
address 192.168.2.4. at port 5062 which is
forced into column 2.

192.168.2.4:5060/PSTNgateway:3 Assigns alias “PSTNgateway” to the UA at IP
address 192.168.2.4. at port 5060 which is
forced into column 3.

-singleua Disables Multiple UA detection for all IP
addresses

Filename: SipScenarioPart2.doc Revision: v2.0 Page 7 of 19

Horizantile Spacing
The horizontal spacing (distance between vertical columns) has a default size of 18 characters. The
maximum SIP message description length is calculated. If the maximum SIP message description
length is greater than the default setting then the default setting is changed to the maximum SIP
message description length and the SIP Scenario Diagram is regenerated.
If the gap is specified by the user and is less than a SIP message description length then an extra line
containing the complete SIP message description is added. The adding of extra lines can be
suppressed by a command.

User defined GAP=12

Largest Description Length =19
(Largest GAP)

Extra Line added with the full
description, when then description
length exceeds the gap setting

Related Command Arguments
-g[ap]:gapSize defines the horizontal spacing between columns
-de[scription]:Enable/Disable Enable=1,Disable=0 Add Commplete Sip

Message Description

Vertical Spacing
There are four vertical spacing options that are based on turning on or off vertical spacing features,
which are:

• Bit 1: Arrows and the description are on the same line or not.
• Bit 0: Add an extra spacing line or not.

The default option is to have the arrow line and the description in the same line and to add an extra
spacing line.

Related Command Arguments
-f[ormat]:v[ertical]:bit_value Defines vertical spacing

The following diagrams illustrate the four different vertical spacing options. Each diagram contains 14
lines.

Filename: SipScenarioPart2.doc Revision: v2.0 Page 8 of 19

Figure 1: Vertical Compression mode 0

Figure 2: Default - Vertical Compression mode 1

Figure 3: Vertical Compression mode 2

Figure 4: Vertical Compression mode 3

Filename: SipScenarioPart2.doc Revision: v2.0 Page 9 of 19

Packet Information
After each SIP scenario arrow line, information can be appended. This information includes

• Call Number
• Physical Frame Number
• Date
• Time
• Relative Time (from first packet)
• Delta Time (from previous packet)

Frame Number
opt# Description

0 Not Display
1 Display (default)

Time: There are four different times that can be independantly
display or not displayed. Each options is represented by a bit. Zero
turns off the time and a one turns on the time. The sum of all the bit
values produces the time display option. e.g. 15 displays all times
while a 5 displays date and Delta time.

bit # Value Description
0 1 Delta Time from the previous frame
1 2 Relative Time from the first frame
2 4 Date
3 8 Local Time of Day

OR

CALL Number
opt# Description

0 Not Display
1 Display (default)
2 Full Display with prefix (call#:)

Related Command Arguments
-f[ormat]:c[allid]:Full=2/On=1/Off=0 Defines call number formats
-f[ormat]:t[time]:BitValue Enables Different time displays
-f[ormat]:p[hy]:Enable=1/Disable=0 Enables/Disables display of physical frame

numbers

Filename: SipScenarioPart2.doc Revision: v2.0 Page 10 of 19

Vertical Spacing for a Time Jump
When there is a large amount of time between successive SIP messages, extra blank lines can be
inserted. This option generates a vertical spacing when there is a jump in time. The amount of time
and the number of blank lines inserted are defined by parameters to this display option. This option
can make debugging easier and is turned off by default.

Vertical Spacing based on a time
jump.
Here is a jump of 12.7135
seconds. 3 blank lines were
inserted at the time jump.

Related Command Arguments
-f[ormat]:s[pacetime]:Seconds/NumLines Adds NumLines Extra Vertical Lines for a time

jump of Seconds

Summary list
There is a special option that display’s the list of IP address and aliases that are used by the scenario.
This option displays the summary information to the display (Standard Output) or to the specified
output file.

Related Command Arguments
-summary[:FILENAME] Displays a list of IP addresses and aliases

defined. The output can be directed to a file.

Filename: SipScenarioPart2.doc Revision: v2.0 Page 11 of 19

Documentation Commands
There are commands that make the output look better and make it easier to understand.
There are commands to reorder (move) SIP messages within the file. Comment can also be added
anywhere.
The colors that are used to indicate different calls, can be changed to any colors used by html.

Comment
lines
Added

CommentPrefix
defines the indent
for comments

Frames 18-20
Reordered

After Frame 24

Notice that the frame
numbers are out of
order. Indicates frames
have been reordered

Notice that the delta time
between messages are
negative. Indicates frames
have been reordered.

Notice that the time has
jumped backwards.
Indicates frames have
been reordered

Notice different colors
for different calls

green is for call 1
blue is for call 2

Related Command Arguments
-re[order]:FRAMELIST:FRAME Physical frames defined by FRAMELIST are

displayed after FRAME. FRAMELIST is a
comma separate list of ranges of physical frame
numbers or individual physical frame numbers.
eg. 1-5,2,4,10-12,3

-reorder:18-20:24 Displays frames 18-20 after frame 24.
-c[omment]:FRAME:COMMENT Inserts the COMMENT after FRAME.
-comment:11:Joe Answers Call Adds comment “Joe Answers Call” after frame

11.
-c[ommentprefix]:STRING: pre-appends STRING before every comment.

This is used to define the indent for comments.
Typically the string is just a set of spaces.

-c:1234567890: pre-appends 1234567890 before every
comment.

-color:COLORLIST A comma separated list of colors. Each color
must be in HTML format for color.

COLORLIST The set of html colors is from the following list
Black,Green,Silver,Lime,Gray,Olive,White,Yello

Filename: SipScenarioPart2.doc Revision: v2.0 Page 12 of 19

w,Maroon,Navy,Red,Blue,Purple,Teal,Fuchsia,
Aqua

 or a color can be a user defined color in the
form #RRGGBB where RR,GG,BB are each two
hex digits e.g. #FF0080

-color:black,red,green,#FF2581 Assign the set of colors to be used for calls.

Call Filters

Call Filters reduce the quantity of ethernet frames by either including or excluding all the ethernet
packets for a call. A include flag is maintained for each call (by unique callid) and has three values
include, exclude and undefined. The default value for the include flag is undefined. Include call filters
set the include flag to include. Exclude call filters set the include flag to exclude. Once the flag has set
to exclude, it will not be changed.
When there exists an include call filter then the undefined value means exclude, else the undefined
value means include.

• Call Number.
Includes / Excludes a set of calls by the call number.
This call filter is the first call filter to execute. It executes during the parsing of the command
arguments. For each call referenced by the command argument, the respective include flag is
set to either include or exclude.

Dynamic Call Filters

During the parsing of each SIP Message, dynamic call filters are executed. These filter either
match or do not match the filter condition. If the filter matches the filter condition for any SIP
message then the filter is applied. When the filter is applied then the include flag is set to include
(for include filters) and to exclude (for exclude filters).
There can be multiple include filters and multiple exclude filters.
Each filter acts independently of other filters, resulting in include filter conditions being “ored”
together and exclude filter conditions being “ored” together.

“Not” Option
There is a “not” option to dynamic filters. When a normal filter matches any SIP message
then the filter is applied. The not option does the opposite, when the filter matches no
SIP message in the SIP call, then the filter is applied. An include filter for condition A is
the same as an exclude “not” filter for condition A. This becomes important when include
filters need to be “anded” together so that include CONDTION A and include
CONDITION B can be “anded” together instead “ored” together. So CONDITON A and
CONDITION B can be achieved by
An Include CONDITION A statement and an exclude not CONDITION B statement.

Filename: SipScenarioPart2.doc Revision: v2.0 Page 13 of 19

• IP Address.
Includes / Excludes any call that has the specified IP address in the IP header in any SIP
message that is a part of the call.
Each IP address filter has a value of either include or exclude.
If the source IP address matches an IP address filter then that filter is applied to the respective

call.
If the destination IP address matches an IP address filter then that filter is applied to the
respective call.

• SIP Request
Includes/Excludes any call, where some SIP message has the SIP Request in the first header
that matches

• Regular Expression Matching.
Includes/Excludes any call, where some SIP message in that call has a header that matches
the specified (Perl) regular expression.
Each Perl Regular Expression filter has a value of either include or exclude.

Each header in a SIP Message (not attached message bodies, like SDP) is matched against
the Perl Regular Expression. If a match is found then the filter is applied to the respective call.
All Regular Expression filters are executed in order that they are defined.

Perl Expression matching is case insensitive.
This filter could find all calls to me by
EXPRESSION= “^INVITE.*ray.elliott@ipc.com” or
EXPRESSION= “^to.*ray.elliott@ipc.com”
or find REGISTER requests by
EXPRESSION= “^REGISTER”

See Perl documentation for details of matching and perl regular expressions
http://www.perldoc.com/perl5.6/pod/perlre.html
Here are some definitions of the Perl metacharacter characters.

^ Matches start of line
$ Matches end of line
| Logical Or
\w Match a "word" character (alphanumeric plus "_")
\W Match a non-word character
\s Match a whitespace character
\S Match a non-whitespace character
\d Match a digit character
\D Match a non-digit character
\X escapes next character. same as X e.g. \\ evaluates to \
\b Matches a word boundary
. Matches any character.
+ Preceding character or expression must occur one or more times
* Preceding character or expression must occur zero or more times
? Preceding character or expression must occur zero or one times
{N,M} Preceding character or expression must occur at Least N times but not more than

M times
() Grouping
(?i) Add to start of String if case-insensitive matching is desired.
\s* Matches any white space string. Empty allowed.
\s+ Matches any white space string. Must have some white space.

Filename: SipScenarioPart2.doc Revision: v2.0 Page 14 of 19

mailto:ray.elliott@ipc.com
mailto:ray.elliott@ipc.com
http://www.perldoc.com/perl5.6/pod/perlre.html

\w+ Matches a word

Related Command Arguments
-I[nclude]:c[allid]:LIST Calls defined by LIST are displayed. LIST is a

comma separate list of ranges of call numbers
or individual call numbers.
eg. 1-5,2,4,10-12,3

-e[xclude]:c[allid]:LIST Calls defined by LIST are not displayed. LIST is
a comma separate list of ranges of call numbers
or individual call numbers.
eg. 1-5,2,4,10-12,3

-I[nclude][:not_option]:ip:IPADDRESS Includes any call that has either the source of
destination IP ADDRESS in the IP header equal
to the specified IPADDRESS for some SIP
message in that call.

-e[xclude] [:ip_options]:ip:IPADDRESS Excludes any call that has either the source of
destination IP ADDRESS in the IP header equal
to the specified IPADDRESS for some SIP
message in that call.

not_option := ! | not the not_option is used to negate the matching
condition.
For example, -include:not:ip:192.168.10.11 will
include any call that does not send/receive
some SIP message to ip address
192.168.10.11. This seems to be identical to
-exclude:ip:192.168.10.11. and not required.
The difference becomes a necessity when
trying to include SIP calls message to
“ray.Elliott” that only contain “REFER request”
Sip messages. Two includes would “or” these
conditions together rather that “anding” them
together. So to achieve the required results
Include SIP messages to “Ray.Elliott” and
exclude SIP calls that do not contain the
REFER request.

-I[nclude][:not_option]:req[uest]:REQUEST Includes any call that has some SIP Message
with the SIP request matching REQUEST.

-e[xclude][:not_option]:req[uest]:REQUEST Excludes any call that has some SIP Message
with the SIP request matching REQUEST.

-I[nclude] [:exp_options]:m[atch]:STRING Same as include:expression:PERLPATTERN.
-i[nclude] [:exp_options]:e[xpression]:PERLPATTERN

Includes any call that has a SIP message that
has some header that matches the
PERLPATTERN using Perl Pattern Matching.

-e[xclude] [:exp_options]:e[xpression]:PERLPATTERN
Excludes any call that has a SIP message that
has some header that matches the
PERLPATTERN using Perl Pattern Matching.

Filename: SipScenarioPart2.doc Revision: v2.0 Page 15 of 19

exp_option := ic | noic | not_option The ic and noic option control case sensitive

pattern matching. “ic” is ignore case and
provides case in-sensitive matching. “noic” is no
ignore case and provides case sensitive
matching. The default is “ic” providing case in-
sensitive matching.

exp_options := exp_option | [:exp_options] Set of options for Perl expression pattern
matching.

-e:request:REGISTER Excludes any REGISTER requests transaction
(calls).

-I:ip:192.168.2.3 Includes any call where some SIP message is
sent or received by a UA at 192.168.2.3

-I:called:1-10 Include the first 10 calls.

Merge Utility
The merge utility merges two capture file together. It is assumed that the capture files have an
overlapping period of time and at least one UDP SIP message in common. Typically, the capture files
are generated at different point in the network at approximately the same time.

No NAT devices
There must NOT be a NAT device in the network between the two capture locations. The
NAT device will change the SIP packets (especially the IP header) and the Merge utility
will not find common sip messages, since the IP header is different.

The merge utility keeps only TCP packets and SIP UDP packets. All other captured packets will be
discarded. The two capture files are assumed to contain some common SIP messages. This common
SIP message is used to synchronize time stamps between the two capture files.
The first capture file is be the master capture file.
The master file is read into memory, discarding the appropriate packets and keeping track of identical
UDP SIP messages. For example, SIP 180 ringing messages for a given call are all identical with the
exception that they are sent at different times.
The second file is then is read into memory, discarding the appropriate packets. The first UDP SIP
message that is identical to a unique UDP SIP message in the first file is used to establish the time
synchronization. When successive UDP SIP messages match identically to a unique USP SIP
message in the first file then time is re-synchronized.
When a UDP SIP message from the 2nd file matches identically to a SIP message in the first file within
+- .35 seconds then the UDP SIP message from the 2nd file is discarded, since there is a duplicate SIP
meesage in the 1st file.
TCP packets are just mergedfs, updating the timestamp. The TCP implementation will then discard
duplicate TCP messages.

Related Command Arguments
-Merge[:FILENAME] Defines a second input capture file. The second

file is merged into the first file. The output with
have the base output file name appended with
“.new.dump”

Filename: SipScenarioPart2.doc Revision: v2.0 Page 16 of 19

Theory of Operation

Argument Processing
SIP Scenario first parses all the command arguments. Some of the arguments are stored in an array
and are processed later on.

Include Files
Any command option (switch) can be place in a include file, (or multiple include files). There is a
command that includes an include file. There is a default include file called sip_scenario.ini. This file is
automatically included when the program is started before any other command arguments are parsed.
Each line in the file is a command argument. Blank lines and lines that start with white space “#” or just
“#” are ignored.
The sip_scenario.ini can be setup to contain your personal defaults.

Related Command Arguments
-I[nclude][:skip]:INCLUDEFILE Specifies a file that should be included. Skip

specifies the number of line to ignore at the
beginning of the include file.

Handling the Capture File
Next the libpcap header file is read, determining which version of the libpcap is being used. There is a
version for big-endian vs little-endian, a version for ethernet, and versions for other transport mediums.
SIP Scenario will handle big-endian and little-endian versions, but SIP Scenario will only handle
ethernet transport medium.
The libpcap formatted has a header for each captured packet. This header contains 3 pieces of
information:

• The time of day (seconds and micro seconds) GMT that the packet was traced.
• The length of the frame capture from the transport medium (frame length)
• The length of the captured data stored in the file (capture length).

There are two types of errors that can occur that are based on the capture length.
1. There is not enough data stored to process the next header.
2. Capture Length is not the same as the frame length for SIP messages

The time of day (local time) for the first packet will be displayed in the output header as the “Traced
On” time.
The frame (ethernet packet and all its associated information) is stored in a “Perl Hash” array, which
emulates a “C” structure. We will call this structure the “Packet Information Structure”.
Statistics are kept each time a frame is eliminated from being processed. These statistics are normally
displayed at the end of processing. The number of packets eliminated for a specific reason will be
displayed.
There are two include filter that are applied.

Filename: SipScenarioPart2.doc Revision: v2.0 Page 17 of 19

The first filter includes frames based on the frame number. A set of ranges (pairs of numbers
consisting of a start frame numbers and a end frame numbers) is sorted and defines the set of frames
to include.
The next filter is the time filter. There is a single start time and a single end time. Frames outside the
start time and end time will be discarded.

Related Command Arguments
-range:RANGELIST Specifies the set of frames that will be included.

RANGELIST A comma separate list of ranges of physical
frame numbers or individual physical frame
numbers.
eg. 1-5,2,4,10-12,3
There can be multiple –range arguments each
having their own rangelist.

-I[nclude]:l[ine]:RANGELIST Alternate form of the range argument

-I[nclude][:t[ime]]: STARTTIME-ENDTIME Specifies the time range (start time and end
time) to include capture frames. Frames outside
this range will be discarded.

 There can be only a single –include:time
argument.

TIME:= [[[YEAR/]MM/]DD/]HH:MM Defines Local time Where
Year Number. Eq 2003.
MM Month. Range 1-12
DD Day of Month. 1-31
HH Hour. 0-23
MM Minute. 0-59.

STARTTIME:= TIME Defines STARTTIME
ENDTIME:= TIME Defines ENDTIME

 Default values for Year,MM (month), and DD
(Day) are the same as the first packet traced.
StartTime must be before EndTime.

Parsing a Captured Frame
The frame is then parsed for ethernet information, which is stored in the Packet Information Structure.
Protocol filtering takes place next. All frames, which are not TCP or UDP, are eliminated from further
processing. When a packet is eliminated by protocol filtering, the description will indicate the protocol
name (if known).
Next the frame is parsed by either the TCP or UDP parser, which stores parsed information into the
Packet Information Structure. There is an option that allows Kerberos packets to be parsed.

Kerberos

Filename: SipScenarioPart2.doc Revision: v2.0 Page 18 of 19

During testing of Kerberos, I added the display of Kerberos messages mixed with SIP
messages. Kerberos messages will be display when the Kerberos option is turned on. The
Kerberos is turned off by default.

Related Command Arguments
-kerberos:Enable=1/Disable=0 Enables/Disables Expansion of Kerberos

packets.

TCP Parsing
The transmit IP address, the transmit TCP port, the receive IP address and the receive TCP port
together from a unique TCP channel ID. TCP packets are queued onto the TCP channel packet
queue. The TCP packet headers are parsed to find the TCP sequence numbers. The TCP sequence
numbers are the basis for TCP operation. The sequence numbers identify the position of the
transmitted/received data in the byte stream. If data has been received, that has already been
accepted, then it will be discarded. If there is missed data, then that data will be queue until the missed
data is received. When the correct data is available then it is accepted and passed on. This
mechanism follows the same basic principles as a TCP stack.

SIP Message Detection
SIP messages are detected by having the first line in the packet to be in one of two formats, where

• X is a set of decimal digits
• DESCRIPTION is a set of displayable ASCII characters.
• REQUEST is a set of alpha-numeric character
• RESPONSE is a set of decimal digits

SIPX.X RESPONSE DESCRIPTION
REQUEST DESCRIPTION SIPX.X

SIP Message Parsing
Sip Message parsing is based on stream processing for TCP. First the SIP message is found by
searching for cr lf cr lf. When the SIP message is found then the SIP message is parsed.
The first line is parsed for request / response values. The CallId header value is checked if has already
been used. If not then a call number is assigned to the called Header value.
The called, the call number, request /response values are stored in the Packet Information Structure.
If there is a content length with a non-zero value then the attached message body is extracted.

End of File Processing
When the input file finished parsing the last message, certain actions must be taken. TCP message
queue must be flushed to insure that SIP message are not lost.
Next certain command arguments that were put into the delayed execution list are now executed.
Next, SIP message can be included/excluded or reordered. Also. At this time, comment records are
added as special “SIP messages”.

Filename: SipScenarioPart2.doc Revision: v2.0 Page 19 of 19

