
OEM Customization
This page describes how you can customize OpenOSP to suit your implementation
requirements. The areas you may want to customize are:

• the sample settlement application
• the security support
• the resource management
• the Secure Sockets Layer (SSL)

Sample Settlement Application

This section describes the sample settlement application which is included in the
OpenOSP distribution.

The sample application provides basic billing functionalities such as call detail record
(CDR) generation, subscriber authentication and authorization, client verification and
non-repudiation. It is fully tested to the same standard as the rest of the stack. The reason
this application is considered a "sample" is that it implements functionalities that an
original equipment manufacturer (OEM) is likely to replace when integrating the
OpenOSP implementation with existing systems for billing, routing, certificate
management, etc.

The following sections describe the components of the sample application, and provide
guidelines for OEMs who may want to modify them.

Usage Metering

The usage metering component writes a CDR containing the complete contents of each
received UsageIndication message to a text file. The file format is similar to that used in
Annex F of the v2 OSP specification, but is extended to include all fields in the received
message, including the enhanced usage parameters defined in Annex C of the
specification. CDRs in the text file can be exported to a third party billing application for
customer bill generation.

It is expected that an OEM will replace this with code that either interacts dynamically
with a settlement back office system, or writes OEM-specific format CDRs.

Authorization, Routing, Pricing and Capabilities

This component handles authorization, routing, pricing and capabilities exchanges, using
a Light Weight Access Protocol (LDAP) directory to store information required by the
routing algorithm. The key objects in the directory include the following:

• Service providers, which are hierarchically above the gateways in the directory —
each gateway appears in the directory under the service provider that owns it.

• Gateways, which have the following attributes:

• An IP address that is used to identify the gateway
• One or more partial e164 phone numbers indicating the destination numbers that

it can reach — these partial numbers may be of any length e.g., 1 for the US, 1703
for Virginia, 1703715 for Reston, which is a town in Virginia

• Pricing information (in US$) for call services terminated by the gateway for a
given destination number

The directory also includes information used in subscriber authentication. See the next
section for details.

Destination Ranking

On receipt of an authorization request, the server finds all entries in the directory that
match the required destination, and ranks them in the following order, with the highest
priority first:

1. Gateways with plenty of resources are ranked ahead of those that have exhausted
their resources

2. Gateways that the client requested are ranked ahead of gateways that were not
requested

3. Price to terminate the call, the cheapest are ranked first
4. Quality of match on destination address: i.e. a gateway that advertises "703715"

comes ahead of "703" for matching on destination number "7037154914".

The server then returns signed XML tokens for these routes to the client.

Subscriber Authentication

This component provides a mechanism to authenticate the identity of a subscriber. It uses
an extension to the aforementioned LDAP directory . For each service provider, there
may be a list of subscribers configured. Each subscriber entry is identified by a
"subscriber ID" attribute.

On receipt of a SubscriberAuthenticationRequest, the sample application searches the
directory for an entry with a subscriber ID matching the request, and returns a signed
XML token to the client. If no match is found, it returns a failure response.

It is expected that OEMs will replace this scheme with some alternate scheme for
remotely querying the private subscriber records of each service provider.

Client Verification and Non-Repudiation

This component provides a mechanism for OSP clients (OSP enabled gateways) to
subscribe to an OSP server. It listens to notifications from the OpenOSP stack each time a
client connects or disconnects. It does not take any action to verify clients. All client
connections are accepted.

In addition, this component provides a basic non-repudiation scheme where all signed
requests from OSP clients are recorded in a file. Records of all OSP requests can be used
to reconcile differences in call records from difference OSP servers or even service
providers.

Security Support

The sample cryptography and certificates manager (CCM) provides a basic mechanism to
manage a pool of secure certificates. It is implemented using the facilities of the
OpenSSL distribution. It also makes use of OpenLDAP to store and retrieve certificates
and certificate revocation lists (CRLs) to and from an LDAP-accessible directory. As
such, its Certificate Authority (CA) function may be suitable for large-scale deployment
if the directory schema, described below, is deemed appropriate for a particular OEM.

End entity certificates are stored and retrieved using the subject's distinguished name
(DN) and the userCertificate;binary attribute, which is defined in the standard
LDAP schema. Certificate authority (CA) certificates are treated similarly, except that the
cACertificate;binary attribute is used. Only one certificate is expected to be
stored per end entity or CA. CRLs are stored and retrieved using the issuer's DN and the
certificateRevocationList;binary attribute, which is also defined in the
standard LDAP schema.

The sample CCM provides the following configuration options:

• It can add a suffix to a DN while using it for LDAP access purposes. This allows
certificates and CRLs to use a naming hierarchy that is a subset of the full
directory hierarchy.

• When issuing new certificates, it can expand a relative distinguished name (RDN)
in the certificate request's subject field to a fully-qualified distinguished name
(FQDN) which is inserted into the issued certificate. This allows CCM to define
the name space in which certificates will be issued. The LDAP access suffix
described above is independent of this name expansion.

• It can include a CRL Distribution Point (CRLDP) in each newly-issued
certificate. The CRLDP points to a location from which a suitable CRL may be
retrieved, and will typically be an LDAP URL to the CA's directory entry.

• If RSA certificates are in use, new certificates can be signed using either the MD5
or the SHA-1 digest algorithm.

If an OEM wants to replace the sample CCM in order to integrate with some existing PKI
system, then it should ensure that any certificates issued by CCM via SCEP are put into
an LDAP-accessible directory (with a schema compatible with that described above), as
well as in whatever underlying storage is used for the PKI. Alternatively, the OEM could
implement the alternate (but non-preferred) solution of supporting the GetCert SCEP

http://ldap.hklc.com/
http://ldap.hklc.com/

message. Similarly, the OEM should ensure that there is an LDAP-accessible CRL
distribution point, or implement the alternate (non-preferred) GetCRL message.

The sample CCM uses OpenSSL's random number generator as a random source. If a
different random number generator is required (for example, a hardware-based source),
OpenSSL can be configured to route all random number requests to externally-supplied
callbacks. The external random source will then be used for all random data required by
any part of OpenOSP.

Resource Management

The sample resource manager implements the most simple policy.

• When resources are requested, it allows the OS to determine whether the request
should be satisified (for example, a request for memory is passed directly to
malloc()).

• When resources are released, they are released directly to the OS.

OEMs implementing the OpenOSP server on a system that also has other functions may
want to implement some kind of threshold system to prevent the OSP server from
consuming all the system's resources.

Secure Sockets Layer

The SSL API is implemented by OpenSSL. This handles SSL and Transport Layer
Security (TLS) connections, including renegotiation and session ID re-use, as well as
providing other security-related routines for the sample cryptography and certificates
management library.

OEMs can replace OpenSSL with an alternative SSL / TLS implementation if required,
for example when integrating into an existing system.

