

OpenOSP

Interface Specification

10 April 2001

Document Version 1.3

Data Connection Manual MOM-101-0103

Notice
Copyright (c) 1999, 2000, 2001 Data Connection Limited.

This manual is provided in the hope that it will be useful but without any warranty, either
express or implied.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Data Connection Limited
100 Church Street

Enfield
Middlesex
EN2 6BQ
England

+44 20 8366 1177

http://www.dataconnection.com

OpenOSP Interface Specification

Contents

1 INTRODUCTION..1
1.1 Typographical conventions .. 1

2 OPENOSP INTERFACES OVERVIEW..2
2.1 OSP APIs... 2

2.1.1 OSP API Parameters And Sequences.. 3

2.2 Utility APIs.. 3

3 COMMON INFORMATION FOR OSP APIS...4
3.1 Callback mechanism... 4

3.2 Initialization sequence... 5

3.3 Termination sequence ... 5

3.4 Common data structures and types... 5
3.4.1 OSP_ADDRESS... 5
3.4.2 OSP_CALL_ID... 6
3.4.3 OSP_CLIENT_ID... 7
3.4.4 OSP_CORRELATOR... 7
3.4.5 OSP_DESTINATION... 8
3.4.6 OSP_TOKEN ... 9
3.4.7 OSP_USAGE_DETAIL... 9
3.4.8 OSP_TERM_CAUSE.. 11
3.4.9 OSP_USAGE_STATISTICS ... 11
3.4.10 OSP_USAGE_STATISTICS_PF... 12
3.4.11 OSP_USAGE_STATISTICS_MMVS.. 12
3.4.12 OSP_STATUS... 13
3.4.13 OSP_SERVICE_INFO.. 13
3.4.14 OSP_PROTOCOL_TYPE... 14
3.4.15 OSP_AUTH_INFO... 14

3.5 Return codes... 15

3.6 Signal Handling.. 16
3.7 C implementation ... 16

4 CONTROL API..17
4.1 osp_init .. 17

4.2 osp_listen... 17

4.3 osp_term.. 18

4.4 osp_client_verify_register ... 18

4.5 POSP_CLIENT_VERIFY_CALLBACK.. 19

4.6 POSP_CLIENT_DISCONNECT_CALLBACK.. 20

OpenOSP Interface Specification

4.7 osp_non_repudiation_register .. 20

4.8 POSP_NON_REPUDIATION_CALLBACK... 21

4.9 osp_get_stack_statistics... 21

5 USAGE METERING API..23
5.1 osp_um_register ... 23

5.2 POSP_UM_CALLBACK.. 23

5.3 osp_um_response.. 25

6 AUTHORIZATION AND ROUTING API...26
6.1 osp_ar_register ... 26

6.2 POSP_AR_AUTH_RQ_CALLBACK.. 27
6.3 osp_ar_auth_response ... 29

6.4 POSP_AR_AUTH_IND_CALLBACK.. 30

6.5 osp_ar_auth_confirm .. 31

6.6 POSP_AR_REAUTH_RQ_CALLBACK... 32

6.7 osp_ar_reauth_response .. 33

6.8 POSP_AR_PRICING_IND_CALLBACK.. 34

6.9 osp_ar_pricing_confirm .. 35

6.10 POSP_AR_CAPS_IND_CALLBACK... 36
6.10.1 OSP_DEVICE_INFO ... 37
6.10.2 OSP_CAPS.. 37
6.10.3 OSP_RESOURCE.. 37
6.10.4 OSP_SUPP_PROTOCOL... 38
6.10.5 OSP_DATA_RATE.. 38

6.11 osp_ar_caps_confirm .. 39
6.11.1 OSP_SERVICE.. 40
6.11.2 OSP_SERVICE_URL... 40
6.11.3 OSP_CERTIFICATE.. 41

7 SUBSCRIBER AUTHENTICATION API..42
7.1 osp_sa_register... 42

7.2 POSP_SA_CALLBACK... 42

7.3 osp_sa_response ... 43
7.3.1 OSP_CREDIT_AMOUNT... 44
7.3.2 OSP_CREDIT_TIME.. 44

8 SECURITY API...46
8.1 ccm_init ... 46

8.2 PCCM_SSL_VERIFY_CALLBACK... 46

8.3 ccm_term... 47

OpenOSP Interface Specification

8.4 ccm_pkcs7_sign ... 47

8.5 ccm_pkcs7_verify... 48

8.6 ccm_pkcs7_encrypt... 49
8.7 ccm_pkcs7_decrypt... 50

8.8 ccm_get_cert.. 51

8.9 ccm_get_cert_chain .. 51

8.10 ccm_free_cert_chain ... 51

8.11 ccm_request_new_cert.. 52

8.12 PCCM_NEW_CERT_CALLBACK... 52

8.13 ccm_random... 53

9 RESOURCE API..54
9.1 rm_init ... 54

9.2 rm_term... 54

9.3 rm_get_mem.. 54

9.4 rm_release_mem... 54

9.5 rm_realloc_mem... 55

9.6 rm_get_structure... 55

9.7 rm_release_structure... 56
9.8 rm_request_thread_create .. 56

9.9 rm_notify_thread_exit ... 56

10 SECURE SOCKETS LAYER (SSL) API ...57
10.1 Configuration functions ... 57

10.1.1 SSL_library_init ... 57
10.1.2 SSL_load_error_strings ... 57
10.1.3 CRYPTO_set_mem_functions ... 57
10.1.4 CRYPTO_set_id_callback... 58
10.1.5 CRYPTO_set_locking_callback... 58
10.1.6 SSLv23_server_method .. 59
10.1.7 SSL_CTX_new .. 59
10.1.8 SSL_CTX_free... 59
10.1.9 SSL_CTX_set_options .. 59
10.1.10 SSL_CTX_sess_set_cache_size ... 60
10.1.11 SSL_CTX_set_cipher_list ... 60
10.1.12 SSL_CTX_use_PrivateKey... 61
10.1.13 SSL_CTX_use_certificate ... 61
10.1.14 SSL_CTX_set_verify.. 61
10.1.15 SSL_CTX_set_cert_store.. 62
10.1.16 SSL_CTX_set_ session_id_context.. 62
10.1.17 SSL_CTX_set_ tmp_dh_callback .. 63
10.1.18 SSL_CTX_set_ tmp_rsa_callback.. 63
10.1.19 RAND_set_rand_method .. 63

OpenOSP Interface Specification

10.1.20 RAND_load_file ... 64
10.1.21 RAND_write_file ... 64

10.2 Operational functions .. 64
10.2.1 SSL_new.. 64
10.2.2 SSL_free .. 65
10.2.3 SSL_set_fd... 65
10.2.4 SSL_accept .. 65
10.2.5 SSL_get_error .. 65
10.2.6 SSL_write .. 66
10.2.7 SSL_read... 66
10.2.8 SSL_renegotiate ... 67
10.2.9 SSL_shutdown ... 67
10.2.10 SSL_set_app_data... 67
10.2.11 SSL_get_app_data .. 67
10.2.12 ERR_print_errors_fp... 68
10.2.13 RAND_bytes.. 68

1
OpenOSP Interface Specification

1 Introduction
This document describes the external interfaces of the OpenOSP open source Open Settlement
Protocol (OSP) server protocol stack jointly developed by Cisco Systems and Data Connection
Limited (DCL).

Before starting to use this document, you should read the OpenOSP Product Overview for
general information about OpenOSP.

The remainder of this document is structured as follows.

• Section 2 gives an overview of the OpenOSP interfaces and how they are used.

• Section 3 provides information that is common to the OSP APIs (the subset of interfaces
that your settlement application uses to interface directly to the stack: Control API, UM
API, AR API, and SA API).

• Section 4 describes the Control API.

• Section 5 describes the UM API.

• Section 6 describes the AR API.

• Section 7 describes the SA API.

• Section 8 describes the Security API.

• Section 9 describes the Resource API.

• Section 10 describes the SSL API.

1.1 Typographical conventions
In this document, the following typographical conventions are used.

• Bold text indicates an OSP primitive, for example: AuthorizationRequest.

• Square brackets indicate a reference, for example: [OSP].

• A line printer typeface indicates a C function or type definition, for example: osp_init.

• All C types that are defined by OpenOSP (including function pointer types) are shown in
upper case; other C identifiers, such as function names and variables, are shown in lower
case.

2
OpenOSP Interface Specification

2 OpenOSP Interfaces Overview
The following diagram illustrates the core OpenOSP server stack together with the APIs and the
sample implementations of the other components.

Settlement application

TCP/IP
SSL/TLS

Core OpenOSP Stack

Authorization,
routing and pricing

(via LDAP)

Crypto and
certificates
manager
(CCM)

UM API

Subscriber
authentication

(via LDAP)

AR API SA API

Sockets API SSL API

S
e
c
u
r
i
t
y

A
P
I

Usage
logging

Resource
manager

(RM)

R
e
s
o
u
r
c
e

A
P
I

Control API

 Figure 1 : OpenOSP Server APIs

2.1 OSP APIs
At the top of the diagram are the four OSP APIs, which provide access to the core OpenOSP
server function from your settlement application.

• The Control API allows your application to start and stop OpenOSP, to verify incoming
client connections, and to gather statistical information about its operation.

• The Usage Metering (UM) API allows your application to collect and store usage
information about each call that has been made using the server (for example the call
duration and calling / called numbers), for use in billing.

3
OpenOSP Interface Specification

• The Authorization and Routing (AR) API allows OpenOSP to request authorization and
routing information from your application for a call. This API is also used to pass pricing
and capabilities information (gathered from OSP clients) to your application, for use in
routing and authorization decisions.

• The Subscriber Authentication (SA) API allows OpenOSP to request your application to
authenticate subscribers and check whether they are entitled to use the facilities that OSP
provides (for example to authenticate users with mobile telephones who are calling from
outside their usual network, and to verify whether they are permitted to do so).

Depending on your requirements, your settlement application may not need to use all of these
APIs. For example, you may have multiple OSP servers each providing a subset of these
functions, or you may have no requirement to support subscriber authentication.

2.1.1 OSP API Parameters And Sequences

The information passed on these APIs is based on the contents of the messages between OSP
servers and clients, but OpenOSP breaks it out into individual fields and data structures for ease
of use by the application.

The sequence in which different messages will be received by the server is not specified in
[OSP]; it will depend upon the configuration of the settlement servers and upon the behaviour
of the OSP clients in use.

2.2 Utility APIs
The remaining APIs are used by OpenOSP to access utility functions.

• The Security API allows OpenOSP to manage signatures and certificates.

• The Resource API allows OpenOSP to make requests for operating system resources
(memory and threads), and to free these resources when no longer required. The supplied
Resource Manager code maps these requests to basic operating system functions; the API
allows you to change this mapping to manage your own resource allocation if required (for
example to pre-allocate resources, or to allocate and free them in larger ‘chunks’ rather than
in response to individual requests).

• The Secure Sockets Layer (SSL) API provides access to OSP clients through SSL / TLS.
It is a subset of the API defined by the OpenSSL open source SSL / TLS implementation,
allowing you to use this implementation without change. If you intend to use a different
SSL / TLS implementation with OpenOSP, the implementation must provide this interface.

• The Sockets API is the standard BSD sockets interface as implemented on Sparc Solaris,
and provides access to OSP clients through TCP. This interface is not described in detail in
this document; refer to the Solaris documentation for details.

Note that OpenOSP also implements the Simple Certificate Enrollment Protocol (SCEP), but no
API is required for its operation. Please refer to [SCEP] for details of the protocol.

4
OpenOSP Interface Specification

3 Common Information for OSP APIs
This chapter provides API usage information that is common to some or all of the OSP APIs
(Control API, UM API, AR API, and SA API).

3.1 Callback mechanism
The UM, AR, and SA APIs all use a callback mechanism to allow OpenOSP to make calls into
your application. This mechanism operates as follows. (See Chapters 5–7 for details of the
specific calls used at each API.)

1. At initialization, the application registers with OpenOSP for a specific type of information
(such as usage metering information or authorization requests). This registration includes
the address of a callback function provided by the application to handle this information
type. Only one callback function can be registered for each type of information.

2. Each time OpenOSP needs to pass information to the application, it calls the callback
function that the application has registered for the appropriate type of information.

The callback function can use the supplied information as required, with the following
restrictions:

• It must not block while processing the information. Blocking on a callback will affect
the internal operation of OpenOSP and will reduce overall throughput.

• It must not modify any of the supplied parameters.

• If it needs to use the information outside the callback function itself, it must make a
copy of the data. The supplied parameters, including pointers to data, are valid only for
the lifetime of the callback function, and the application will not be able to access them
after the function has completed.

• It must not call osp_term().

3. The application must then call a ‘response’ or ‘confirm’ function to inform OpenOSP of the
results of its processing. It can do this synchronously from within the callback function
itself, or it can make the call asynchronously from some other thread after the callback
function has completed.

At termination, the application calls the registration function with a null address; this indicates
that it will no longer handle the appropriate information type, and OpenOSP will no longer
make calls to it to do so.

The Control API uses a similar callback mechanism to allow your application to verify the
credentials of each client that connects to the server and to receive a copy of each signed OSP
request that is received. However, the application must process these callbacks synchronously
and there is therefore no ‘response’ or ‘confirm’ function – step 3 above does not apply.

5
OpenOSP Interface Specification

3.2 Initialization sequence
To start using OpenOSP, the settlement application must do the following initialization:

1. Call osp_init() to initialize the OpenOSP stack and its associated libraries.

2. Use the register functions at each API to register for each callback that it will handle.

3. Call osp_listen() to instruct OpenOSP to start listening for OSP client connections.

3.3 Termination sequence
To stop using OpenOSP, the settlement application must do the following termination:

1. Use the register functions at each API to deregister for each callback that it is currently
handling (by supplying a null pointer for each callback function).

2. Call osp_term() to stop the OpenOSP stack and its associated libraries.

3.4 Common data structures and types
This section describes data structures and types that are used in more than one function call on
the OSP APIs. Data structures that are used in only one function call are included in the
individual function call descriptions.

3.4.1 OSP_ADDRESS

The OSP_ADDRESS data structure holds address information for the source or destination of a
call. This structure corresponds to the SourceInfo and DestinationInfo elements described in
[OSP].

typedef struct osp_address
{
 struct osp_address *next;
 char *type;
 char *address;
} OSP_ADDRESS;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

type A null-terminated string that specifies the type of addressing
information provided. This may take one of the following
values:

• e164 An E.164 telephone number (digits only).

• h323 An H.323 identifier.

6
OpenOSP Interface Specification

• url A uniform resource locator.

• email An electronic mail address.

• transport A transport address of the form name:nn,
where name is the domain name, or the IP
address enclosed in square brackets, and nn
is an optional port number.

• international An international party number.

• national A national party number.

• network A network-specific party number.

• subscriber A subscriber party number.

• abbreviated An abbreviated party number.

• e164prefix The initial (most significant) digits of an
E.164 number (digits only).

• iso7818 *An ISO7818-1 ID card number (digits
only).

• pin *A personal identification number (digits
only).

• epin *A base64-encoded encrypted PIN.

 *These values are valid only for source addresses.

 See the descriptions of SourceInfo and DestinationInfo in
[OSP] for further descriptions of the above values.

address A null-terminated string containing the addressing information
for the source or destination.

3.4.2 OSP_CALL_ID

The OSP_CALL_ID data structure holds an H.323 call identifier, which uniquely identifies an
individual call. This structure corresponds to the CallId element described in [OSP].

typedef struct osp_call_id
{
 struct osp_call_id *next;
 char *encoding;
 char *data;
} OSP_CALL_ID;

7
OpenOSP Interface Specification

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

encoding A null-terminated string that identifies the encoding in which
the call identifier is stored. One of the following:

• cdata (XML CDATA format)

• base64

data A null-terminated string containing the call identifier.

3.4.3 OSP_CLIENT_ID

The OSP_CLIENT_ID data structure holds details of a client that is connected to the OSP
server. It is specific to OpenOSP and does not correspond to any element defined in [OSP].

typedef struct osp_client_id
{
 unsigned long ip_address;
 void *ver_cookie;
} OSP_CLIENT_ID;

Members:

ip_address The IP address of the client.

ver_cookie A ‘cookie’ that the application supplies in the client
verification callback routine. This parameter may take any
value appropriate for your application. OpenOSP does not
make use of the cookie, but simply stores it and supplies it on
subsequent callbacks so that the application can identify the
client. See section 4.5,
POSP_CLIENT_VERIFY_CALLBACK, for details of the
client verification callback.

3.4.4 OSP_CORRELATOR

The OSP_CORRELATOR data type is used for a correlator that OpenOSP uses to match
requests and responses. It is specific to OpenOSP and does not correspond to any element
defined in [OSP].

When it uses a callback function that requires a response from the application, OpenOSP
supplies a unique correlator, which the application must return on the response. This ensures
that the server can match the response to the original request even if there are multiple requests
outstanding.

typedef void *OSP_CORRELATOR;

8
OpenOSP Interface Specification

3.4.5 OSP_DESTINATION

The OSP_DESTINATION data structure holds information about the destination for a call that
is being routed using the OSP server. This structure corresponds to the Destination element
described in [OSP].

typedef struct osp_destination
{
 struct osp_destination *next;
 OSP_ADDRESS *info;
 OSP_ADDRESS *alt_list;
 char *signal_address;
 OSP_TOKEN *token_list;
 char *valid_after;
 char *valid_until;
 OSP_USAGE_DETAIL *usage_list;
 OSP_SERVICE_URL *auth_url_list;
 OSP_CALL_ID call_id;
} OSP_DESTINATION;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

info The address of the call destination, or a null pointer if no
destination address has been supplied.

alt_list A pointer to the first item in a list of OSP_ADDRESS
structures, each of which contains an alternative address that
could be used to reach the required destination. The addresses
are listed in order of preference, highest first.

signal_address A null-terminated string containing the call signalling address
for the destination. It is represented as name:nn, where name is
a domain name or an IP address enclosed in square brackets.
The :nn is optional and indicates a TCP port number.

token_list A pointer to the first item in a list of OSP_TOKEN structures,
each of which contains an H.235 security tokens.

valid_after A null-terminated string containing the time at which
authorization begins for this destination. This is in the format
YYYY-MM-DDThh:mm:ssZ (the T and Z are literal characters
used as delimiters). A null pointer indicates that authorization
is effective immediately.

valid_until A null-terminated string containing the time at which
authorization ends for this destination. This is in the format
YYYY-MM-DDThh:mm:ssZ (the T and Z are literal characters
used as delimiters). A null pointer indicates that authorization
continues indefinitely.

9
OpenOSP Interface Specification

usage_list A pointer to the first item in a list of OSP_USAGE_DETAIL
structures, each of which contains usage information.

auth_url_list A pointer to the first item in a list of OSP_SERVICE_URL
structures, each of which contains a uniform resource locator
(URL) of an OSP server by which authorization may be
verified or refreshed.

call_id H.323 call identifier that uniquely identifies the call.

3.4.6 OSP_TOKEN

The OSP_TOKEN data structure contains an H.235 security token. This structure corresponds
to the Token element described in [OSP]. OpenOSP does not process the token data itself, but
simply passes it to or from a client.

typedef struct osp_token
{
 struct osp_token *next;
 char *encoding;
 int token_len
 char *token_data;
} OSP_TOKEN;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

encoding A null-terminated string that identifies the encoding in which
the token is stored. One of the following:

• cdata (XML CDATA format)

• base64

token_len The size in bytes of the token data. This field is only valid for
tokens that are generated by an application and passed as a
parameter to the OpenOSP stack; for such tokens, token_len
must be set to the size of the token data. Tokens that are
generated by the OpenOSP stack are always null-terminated
and so do not require the use of this field.

token_data A string containing the token data. For tokens generated by the
OpenOSP stack, the string is null-terminated.

3.4.7 OSP_USAGE_DETAIL

The OSP_USAGE_DETAIL data structure contains information about resource usage. It
corresponds to the UsageDetail element described in [OSP].

10
OpenOSP Interface Specification

It is used at the UM API to record details of a call that has been completed, and at the AR API
to describe the services that have been authorized for a call.

typedef struct osp_usage_detail
{
 struct osp_usage_detail *next;
 OSP_SERVICE_INFO *service;
 char *amount;
 char *increment;
 char *unit;
 char *start_time;
 char *end_time;
 OSP_TERM_CAUSE *term_cause;
 OSP_USAGE_STATISTICS *statistics;
} OSP_USAGE_DETAIL;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

service A pointer to an OSP_SERVICE_INFO structure describing the
type of service. A null pointer indicates basic internet
telephony service, which is the only type of service currently
defined by [OSP].

amount A null-terminated string containing a number which, when
multiplied by ‘increment,’ gives the number of units of service
used or authorized.

increment A null-terminated string containing a number which, when
multiplied by ‘amount,’ gives the number of units of service
used or authorized.

unit A null-terminated string containing the units of use by which
the usage or authorization period is indicated, for example,
seconds, packets, bytes.

start_time A null-terminated string containing the time at which the
service begins. This is in the format YYYY-MM-
DDThh:mm:ssZ (the T and Z are literal characters used as
delimiters).
In a call authorization, this parameter can be set to a null
pointer, indicating that authorization is effective immediately.

end_time A null-terminated string containing the time at which the
service ends. This is in the format YYYY-MM-DDThh:mm:ssZ
(the T and Z are literal characters used as delimiters).
In a call authorization, this parameter can be set to a null
pointer, indicating that authorization continues indefinitely.

term_cause A pointer to an OSP_TERM_CAUSE structure indicating why
the call ended.

11
OpenOSP Interface Specification

statistics A pointer to an OSP_USAGE_STATISTICS structure
containing enhanced usage statistics for the call. This
parameter may be null if no enhanced usage statistics were
provided by the OSP client.

Example: If ‘amount’ is ‘10,’ ‘increment’ is ‘60,’ and ‘unit’ is ‘s,’ this indicates a usage
duration of 10 minutes.

3.4.8 OSP_TERM_CAUSE

The OSP_TERM_CAUSE structure contains information about how and why a call ended. It
corresponds to the TCCode and TerminationCause elements described in [OSP].

typedef struct osp_term_cause
{
 char *term_code;
 char *term_desc;
} OSP_TERM_CAUSE;

Members:

term_code A null-terminated string containing a numerical code indicating
why a call ended. See the description of TCCode in [OSP] for
the values this can take.

term_desc A null-terminated string containing a summary description of
this termination code. See the description of
TerminationCause in [OSP] for typical summary descriptions.

3.4.9 OSP_USAGE_STATISTICS

The OSP_USAGE_STATISTICS contains enhanced statistical information about a call. It
corresponds to the Statistics element described in [OSP].

typedef struct osp_usage_statistics
{
 struct osp_usage_statistics *next;
 OSP_USAGE_STATISTICS_PF *loss_sent;
 OSP_USAGE_STATISTICS_PF *loss_received;
 OSP_USAGE_STATISTICS_MMVS *one_way_delay;
 OSP_USAGE_STATISTICS_MMVS *round_trip_delay;
} OSP_USAGE_STATISTICS;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

loss_sent A pointer to an OSP_USAGE_STATISTICS_PF structure
containing statistical information about lost packets that were
sent from the originating gateway to the terminating gateway.

12
OpenOSP Interface Specification

loss_received A pointer to an OSP_USAGE_STATISTICS_PF structure
containing statistical information about lost packets that were
sent from the terminating gateway to the originating gateway.

one_way_delay A pointer to an OSP_USAGE_STATISTICS_MMVS structure
containing statistical information about the one way delay
between the originating gateway and the terminating gateway.

round_trip_delay A pointer to an OSP_USAGE_STATISTICS_MMVS structure
containing statistical information about the round trip delay
between the originating gateway and the terminating gateway.

3.4.10 OSP_USAGE_STATISTICS_PF

The OSP_USAGE_STATISTICS_PF data structure is used as a substructure of
OSP_USAGE_STATISTICS.

typedef struct osp_usage_statistics_pf
{
 struct osp_usage_statistics_pf *next;
 char *packets;
 char *fraction;
} OSP_USAGE_STATISTICS_PF;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

packets A null-terminated string containing the total number of packets
that was lost during the call.

fraction A null-terminated string containing the fraction of packets that
were lost, expressed as a number between 0 (no packets lost)
and 255 (all packets lost).

3.4.11 OSP_USAGE_STATISTICS_MMVS

The OSP_USAGE_STATISTICS_MMVS data structure is used as a substructure of
OSP_USAGE_STATISTICS.

typedef struct osp_usage_statistics_mmvs
{
 struct osp_usage_statistics_mmvs *next;
 char *minimum;
 char *mean;
 char *variance;
 char *samples;
} OSP_USAGE_STATISTICS_MMVS;

13
OpenOSP Interface Specification

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

minimum A null-terminated string containing the minimum measured
delay time in milliseconds.

mean A null-terminated string containing the mean measured delay
time in milliseconds.

variance A null-terminated string containing the statistical variance of
the measured delay time in squared milliseconds.

samples A null-terminated string containing the number of delay time
samples measured by the reporting system.

3.4.12 OSP_STATUS

The OSP_STATUS data structure contains information about the status of an OSP operation. It
corresponds to the Status element described in [OSP].

It is used by the UM, AR and SA APIs to indicate the status code and description that should be
used to form the XML response for an OSP operation.

typedef struct osp_status
{
 int code;
 const char *desc;
} OSP_STATUS;

Members:

code The OSP status code to be returned to the client. See the
description of Code in [OSP] for the values this can take.

desc A null-terminated string containing a summary description of
this status code.

3.4.13 OSP_SERVICE_INFO

The OSP_SERVICE_INFO data structure contains information about the type of service that is
either requested for a particular operation or supported by a particular gateway. It corresponds
to the Service element described in [OSP].

typedef struct osp_service_info
{
 char *bandwidth;
 char *service_type;
 OSP_PROTOCOL_TYPE *prot_type
} OSP_SERVICE_INFO;

14
OpenOSP Interface Specification

Members:

bandwidth A null-terminated string containing the requested or supported
bandwidth.

service_type A null-terminated string containing the requested or supported
type of service. For example, this field might contain one of
the values “voice” or “fax”.

prot_type A pointer to the first item in a list of OSP_PROTOCOL_TYPE
structures, each of which specifies a requested or supported set
of protocol details.

3.4.14 OSP_PROTOCOL_TYPE

The OSP_PROTOCOL_TYPE data structure contains information about the protocol details
that are either requested for a particular operation or supported by a particular gateway.

It is used as a part of the OSP_SERVICE_INFO and OSP_SUPP_PROTOCOL structures.

typedef struct osp_protocol_type
{
 struct osp_protocol_type *next;
 char *prot_name;
} OSP_PROTOCOL_TYPE;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

prot_name A null-terminated string containing the requested or supported
protocol name. For example, this field might contain one of
the values “sip” or “h323”.

3.4.15 OSP_AUTH_INFO

The OSP_AUTH_INFO data structure contains a subscriber authentication token.

Subscriber authentication tokens are used by the AR and SA APIs to describe the fact that a
particular subscriber has been authenticated by the OpenOSP server.

typedef struct osp_auth_info
{
 struct osp_auth_info *next;
 char *encoding;
 char *auth_data;
} OSP_AUTH_INFO;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

15
OpenOSP Interface Specification

encoding A null-terminated string that identifies the encoding in which
the token is stored. One of the following:

• cdata (XML CDATA format)

• base64

auth_data A null-termination string containing the token data.

3.5 Return codes
All function calls at the OpenOSP interfaces use a standard set of return codes, to indicate that
the function completed successfully or to indicate the type of error that occurred.

• When your application makes a call to OpenOSP, it must check the return value from the
function to determine whether it was successful.

• Callback routines supplied by your application must use these return codes to indicate
success or error conditions to OpenOSP.

The following return code indicates that the function was successful. The caller can use the
values of any parameters that have been modified by the function.

OSP_SUCCESS The function completed successfully.

The following return codes indicate that the function was unsuccessful. The values of any
parameters modified by the function may not be valid, and the caller should not use them.

OSP_ERROR The function failed for an unspecified reason.

OSP_ERR_ALREADY_INIT OpenOSP was already initialized.

OSP_ERR_NOT_INIT OpenOSP was not initialized.

OSP_ERR_BAD_HANDLE The supplied component handle parameter was not valid.

OSP_ERR_BAD_PARAM One or more of the parameters was not valid.

OSP_ERR_BAD_REQUEST The supplied request data was not valid.

OSP_ERR_BAD_CORR The supplied correlator was not valid.

OSP_ERR_MEMORY The function failed for lack of system memory.

OSP_ERR_NO_RESOURCES The function failed for lack of a system resource.

OSP_ERR_FILE The function failed because of a file access problem.

OSP_ERR_CONFIG OpenOSP was not configured correctly.

OSP_ERR_BIND_FAILED OpenOSP could not bind to the directory server.

16
OpenOSP Interface Specification

OSP_ERR_DENIED The supplied credentials were not acceptable.

OSP_ERR_MISSING_ATTR The supplied address did not carry a type attribute.

OSP_ERR_FAILED_VERIFY Verification of the supplied data failed.

OSP_ERR_BUFSIZE The supplied buffer was not large enough.

3.6 Signal Handling
Each of the OpenOSP API functions sets the thread signal mask on entry to mask all maskable
signals, and restores the old mask on exit. This is done to ensure predictable operation of the
OpenOSP stack.

3.7 C implementation
All of the OSP APIs, together with their associated types and return codes, are defined in the
header file openosp.h. The CCM and RM APIs are defined in the header files ccmextrn.h and
rmextrn.h.

The OSPAPI modifier on the OSP APIs is included to allow explicit specification of the calling
conventions for these functions. It is defined in openosp.h.

17
OpenOSP Interface Specification

4 Control API
The Control API allows the settlement application to

• initialize the OSP stack, start it listening for client connections, and terminate the stack

• obtain statistical data about the stack.

The settlement application may also register callbacks with the Control API. These callbacks
are used to

• verify a client when it connects

• store received messages for non-repudiation purposes.

If the application registers a client verification callback, OpenOSP passes out details of each
connecting client, including any certificates received during SSL / TLS negotiation. The
application may then return a ‘cookie’ (that is, some application-specific correlator), which the
server will pass back to the application on any subsequent callbacks. When the client
connection is closed, the server calls the application’s disconnection callback (if one is
registered) to allow the application to free any resources associated with the connection.

If no client verification callback is registered, the server will accept all non-secure connections,
and it will accept all secure connections subject to a consistent and within-date certificate chain.

OpenOSP calls the non-repudiation callback with all S/MIME-signed OSP requests that it
receives. This allows the application to store a complete copy of the request.

4.1 osp_init
The settlement application calls this function to initialize the OpenOSP stack and its associated
libraries.

See section 3.2, Initialization sequence, for details of how this function must be used within
OpenOSP’s initialization sequence.

OSP_RC OSPAPI osp_init(void);

Parameters:

None.

4.2 osp_listen
The settlement application calls this function to instruct OpenOSP to begin listening for
connections from clients.

See section 3.2, Initialization sequence, for details of how this function must be used within
OpenOSP’s initialization sequence.

18
OpenOSP Interface Specification

OSP_RC OSPAPI osp_listen(void);

Parameters:

None.

4.3 osp_term
The settlement application calls this function to terminate the OpenOSP stack and its associated
libraries. This function blocks until the stack has completely terminated. Note that this means
that osp_term() may not be called from within a callback.

See section 3.3, Termination sequence, for details of how this function must be used within
OpenOSP’s termination sequence.

OSP_RC OSPAPI osp_term(void);

Parameters:

None.

4.4 osp_client_verify_register
The settlement application calls this function to register two callback routines. One callback
handles verification of each connecting client, while the other receives a notification for each
disconnecting client. The application does not need to register both callback routines; a null
pointer may be supplied in place of either function pointer if appropriate.

If the application issues more than one call to this function, the parameters provided in the most
recent call override those provided in previous calls.

The application may deregister either or both callbacks at any time by calling this function with
a null pointer in place of the appropriate function pointer (and repeating the existing callback
function pointer for a callback that it still wishes to handle).

OSP_RC OSPAPI osp_client_verify_register
 (POSP_CLIENT_VERIFY_CALLBACK cv_cb,
 POSP_CLIENT_DISCONNECT_CALLBACK cd_cb);

Parameters:

cv_cb A pointer to the settlement application’s client verification
callback routine. See section 4.5,
POSP_CLIENT_VERIFY_CALLBACK, for details of this
routine.

 To deregister the existing callback routine, the application
supplies a null pointer.

19
OpenOSP Interface Specification

cd_cb A pointer to the settlement application’s client disconnection
callback routine. See section 4.6,
POSP_CLIENT_DISCONNECT_CALLBACK, for details of
this routine.

 To deregister the existing callback routine, the application
supplies a null pointer.

4.5 POSP_CLIENT_VERIFY_CALLBACK
The settlement application provides this function to receive details of each connecting OSP
client. It may accept or deny the connection attempt based on the information supplied. The
application registers this function during initialization by supplying the address of the function
on the osp_client_verify_register() call.

OpenOSP calls this callback function only once for each new non-secure connection from an
OSP client. Only the parameters ip_address and ver_cookie_ptr are valid in this case; the
other parameters are set to null or zero. The value of the cookie pointed to by ver_cookie_ptr
is initially null, and the application is free to set it to whatever value is desired. The application
may then use the cookie as a correlator to identify this connection in subsequent callbacks
across the application API.

OpenOSP calls this callback function one or more times for each new secure connection from
an OSP client. In this case, each call supplies information about one of the certificates
presented by the client during the SSL / TLS negotiation. The certificates are supplied in order,
with the root certificate in the first call and the client’s certificate in the last call.

The first time this function is called for a particular secure connection, the cookie is set in the
same way as described above for non-secure connections. On subsequent calls to this function
for the same connection, the cookie value pointed to by ver_cookie_ptr is the same as that
returned on the previous call. The application may change the value of the cookie on each call
if desired. The last returned cookie value is saved for later use on the application API callbacks
and on the disconnection callback.

The application must return OSP_SUCCESS if the client’s credentials are acceptable, and
OSP_ERR_DENIED otherwise. If the application returns OSP_ERR_DENIED, the client’s
connection attempt is denied and OpenOSP calls the disconnection callback, if one is registered.
OpenOSP will not make further calls to the client verification callback for a connection that has
been denied.

OSP_RC (OSPAPI *POSP_CLIENT_VERIFY_CALLBACK)
 (unsigned long ip_address,
 void **ver_cookie_ptr,
 char *cert,
 unsigned int cert_len,
 unsigned int chain_len,
 unsigned int chain_pos);

Parameters:

ip_address The IP address of the client.

20
OpenOSP Interface Specification

ver_cookie_ptr A pointer to a verification ‘cookie’ that the application may fill
in with a private value. OpenOSP will pass this value on all
subsequent callbacks across the application API.

cert A pointer to the certificate to be checked. The certificate is in
ASN.1 DER-encoded X.509 format.

cert_len The number of bytes in the certificate.

chain_len The total number of certificates in the chain, including the
clients certificate and the root certificate.

chain_pos The position of the supplied certificate in the client’s chain of
certificates; 0 indicates the client’s certificate.

4.6 POSP_CLIENT_DISCONNECT_CALLBACK
The settlement application provides this function so that OpenOSP can inform it when an OSP
client has disconnected. The application registers this function during initialization by
supplying the address of the function on the osp_client_verify_register() call.

OpenOSP then calls this callback function each time an OSP client disconnects from the server.
This allows the application to free any resources associated with the client connection.

This function is also called if the application denies a connection attempt by returning
OSP_ERR_DENIED from the client verification callback.

void (OSPAPI *POSP_CLIENT_DISCONNECT_CALLBACK)
 (OSP_CLIENT_ID *client_id);

Parameters:

client_id A structure containing the client IP address and the ‘cookie’
from any earlier client verification.

4.7 osp_non_repudiation_register
The settlement application calls this function to register a callback routine that will handle data
for non-repudiation. The application does not need to support non-repudiation; if it does not
call this function, the server will not provide this information.

OpenOSP then calls the callback routine each time it processes an S/MIME-signed OSP request.
This allows the application to store a copy of the request data.

If the application issues more than one call to this function, the parameter provided in the most
recent call overrides those provided in previous calls. The application may deregister the
callback at any time by calling this function with a null pointer in place of the function pointer.

OSP_RC OSPAPI osp_non_repudiation_register
 (POSP_NON_REPUDIATION_CALLBACK nr_cb);

21
OpenOSP Interface Specification

Parameters:

nr_cb A pointer to the settlement application’s non-repudiation
callback routine. See section 4.8,
POSP_NON_REPUDIATION_CALLBACK, for details of this
routine.

 To deregister the existing callback routine, the application
supplies a null pointer.

4.8 POSP_NON_REPUDIATION_CALLBACK
The settlement application provides this function to handle non-repudiation data, and registers it
during initialization by supplying the address of the function on the
osp_non_repudiation_register() call.

OpenOSP then calls this callback function each time it processes an S/MIME-signed OSP
request. The parameters to the function include a pointer to the request data buffer, which
contains all of the HTTP headers, the request itself, and the S/MIME signature. This allows the
settlement application to store a complete copy of the request.

void (OSPAPI *POSP_NON_REPUDIATION_CALLBACK)
 (char *buffer,
 unsigned int buf_len,
 OSP_CLIENT_ID *client_id);

Parameters:

buffer A pointer to the complete HTTP request as it was received
from the client.

buf_len The length of the supplied buffer.

client_id A structure containing the client IP address and the ‘cookie’
from any earlier client verification.

4.9 osp_get_stack_statistics
The settlement application calls this function to gather statistics about the number of
connections (both secure and non-secure) and requests received by OpenOSP since it was
initialized.

OSP_RC OSPAPI osp_get_stack_statistics(OSP_STATS *stats);

typedef struct osp_stats
{
 unsigned int ssl_conns; // secure connections received
 unsigned int nonssl_conns; // non-secure connections received
 unsigned int osp_requests; // total OSP requests received
 unsigned int scep_requests; // total SCEP requests received
} OSP_STATS;

22
OpenOSP Interface Specification

Parameters:

stats A pointer to a statistics structure. OpenOSP fills in this
structure with statistics information, as follows:

stats.ssl_conns The total number of secure connections established with OSP
clients since OpenOSP was initialized.

stats.nonssl_conns The total number of non-secure connections established with
OSP clients since OpenOSP was initialized.

stats.osp_requests The total number of OSP requests received from OSP clients
since OpenOSP was initialized.

stats.scep_requests The total number of SCEP requests received from SCEP clients
since OpenOSP was initialized. See [SCEP] for full details of
this protocol.

23
OpenOSP Interface Specification

5 Usage Metering API
The Usage Metering (UM) API allows OpenOSP to pass usage information to your settlement
application. The information may be passed into a permanent storage facility (for later retrieval
by an offline settlement application), or directly to an external usage metering application.

5.1 osp_um_register
The application calls this function to register a callback routine that will handle information
from OSP UsageIndication messages. OpenOSP then calls this UM callback routine each time
it receives a UsageIndication from an OSP client.

If the application issues more than one call to this function, the parameter provided in the most
recent call overrides those provided in previous calls.

The application may deregister the callback at any time by calling this function with a null
pointer in place of the function pointer. After deregistering the callback, the application will not
receive any further usage information unless it registers a new UM callback routine.

OSP_RC OSPAPI osp_um_register(POSP_UM_CALLBACK um_cb);

Parameters:

um_cb A pointer to the settlement application’s usage metering
callback routine. See section 5.2, POSP_UM_CALLBACK,
for details of this routine.

 To deregister the existing callback routine, the application
supplies a null pointer.

5.2 POSP_UM_CALLBACK
The application provides this function to handle information from OSP UsageIndication
messages, and registers it during initialization by supplying the address of the function on the
osp_um_register() call.

OpenOSP then calls this function each time it receives a UsageIndication from an OSP client.
The parameters passed to the routine provide usage information for a call that has been made
using the OSP server.

The settlement application must respond to the callback by calling osp_um_response().

24
OpenOSP Interface Specification

OSP_RC (OSPAPI *POSP_UM_CALLBACK)(OSP_CORRELATOR corr,
 char *timestamp,
 char *role,
 char *transaction_id,
 OSP_CALL_ID *call_id,
 OSP_ADDRESS *source_info,
 OSP_ADDRESS *source_alt_list,
 OSP_ADDRESS *dest_info,
 OSP_ADDRESS *dest_alt_list,
 OSP_USAGE_DETAIL *use_detail_list,
 OSP_CLIENT_ID *client_id);

For details of the data structures OSP_CALL_ID, OSP_ADDRESS, OSP_USAGE_DETAIL,
and OSP_CLIENT_ID, see section 3.4, Common data structures and types.

Parameters:

corr A correlator to be passed back to OpenOSP on the subsequent
call to osp_um_response().

timestamp A null-terminated string containing the message’s timestamp.
This is in the format YYYY-MM-DDThh:mm:ssZ (the T and Z
are literal characters used as delimiters).

role A null-terminated string describing the client’s role in the call.
This may take one of the following values:

• source The client was the source.

• destination The client was the destination.

• other The client was a system other than the source
or the destination.

transaction_id A null-terminated string containing the transaction identifier
provided by the client from its previous authorization by the
server. This was provided by the application on a previous
osp_ar_auth_response() call.

call_id A structure containing the H.323 call ID provided by the client.

source_info A structure containing details about the source of the call, e.g.
the originating phone number.

source_alt_list A pointer to the first item in a list of OSP_ADDRESS
structures, each of which contains alternate information about
the source of the call, e.g. the address of the source gateway.

dest_info A structure containing details about the destination of the call,
e.g. the destination phone number.

25
OpenOSP Interface Specification

dest_alt_list A pointer to the first item in a list of OSP_ADDRESS
structures, each of which contains alternate information about
the destination, e.g. the address of the termination gateway.

use_detail_list A pointer to the first item in a list of OSP_USAGE_DETAIL
structures, each of which contains the usage details of the call,
e.g. the duration of the call and the reason it ended.

client_id A structure containing the client IP address and the ‘cookie’
from any earlier client verification.

5.3 osp_um_response
When OpenOSP calls the settlement application’s implementation of
POSP_UM_CALLBACK(), the application must respond by calling osp_um_response(). This
function uses the information provided to construct an OSP UsageConfirmation message, to be
sent to the OSP client from which the indication originated. This indicates acceptance or
rejection of the information in the indication.

OSP_RC OSPAPI osp_um_response(OSP_CORRELATOR corr,
 OSP_STATUS *status,
 unsigned int audit_signal,
 unsigned int sig_required);

Parameters:

corr The correlator supplied by OpenOSP on the corresponding
usage metering callback.

status A pointer to an OSP_STATUS structure that specifies the
status code and description that should be used to form the
UsageConfirmation response.

audit_signal This parameter controls the use of Cisco’s AuditSignal
extension to OSP. Set it to 0 if OpenOSP should not include an
AuditSignal element in the response. Otherwise, the following
values are valid:

• OSP_UM_AUDIT_START: include an AuditSignal
element in the response that tells the client to sign future
UsageIndication messages using S/MIME.

• OSP_UM_AUDIT_STOP: include an AuditSignal
element in the response that tells the client not to sign
future UsageIndication messages using S/MIME.

sig_required Set this parameter to 1 if the server should S/MIME sign the
response, 0 if it should not.

For details of the OSP_STATUS structure, see section 3.4, Common data structures and types.

26
OpenOSP Interface Specification

6 Authorization and Routing API
The Authorization and Routing (AR) API allows OpenOSP to request authorization and routing
information from your application for a call. This API is also used to pass pricing and
capabilities information (gathered from OSP clients) to your application, for use in routing and
authorization decisions.

Authorization and pricing are grouped into the same API because both sets of functions need to
access the routing and pricing database.

Information from five different OSP requests and indications is handled at this API, and each
request or indication is associated with a different callback routine provided by the application.
The application can choose to support only a subset of these if appropriate.

• AuthorizationRequest: OpenOSP can request the application to provide authorization and
routing information for a call.

• AuthorizationIndication: OpenOSP can request the application to verify authorization
information received by a client that is accepting an incoming call.

• ReauthorizationRequest: OpenOSP can request the application to extend the authorization
period for an existing call (for example if additional payments have been made to extend a
prepaid call).

• PricingIndication: OpenOSP can provide information to the application about the pricing
for calls routed through different gateways (for use by the application in determining the
best route for a call).

• CapabilitiesIndication: OpenOSP can provide information to the application about the
capabilities of different gateways (for use by the application in determining the best route
for a call).

6.1 osp_ar_register
The application calls this function to register callback routines that will handle each of the five
OSP requests described above. The application does not need to support all five; it can provide
callback routines for only the requests it needs to handle.

OpenOSP then calls the appropriate callback routine each time it receives a request of a type for
which the application has registered.

If the application issues more than one call to this function, the parameters provided in the most
recent call override those provided in previous calls.

The application may deregister one or more of the callbacks at any time by calling this function
with null pointers in place of the appropriate function pointers (and repeating the existing
callback function pointers for any callbacks that it still wishes to handle).

27
OpenOSP Interface Specification

OSP_RC OSPAPI osp_ar_register(POSP_AR_AUTH_RQ_CALLBACK ar_cb,
 POSP_AR_AUTH_IND_CALLBACK ai_cb,
 POSP_AR_REAUTH_RQ_CALLBACK ra_cb,
 POSP_AR_PRICING_IND_CALLBACK pi_cb,
 POSP_AR_CAPS_IND_CALLBACK cp_cb);

Parameters:

ar_cb A pointer to the authorization request callback routine, or a null
pointer if the application does not support authorization
requests. See section 6.2,
POSP_AR_AUTH_RQ_CALLBACK, for details of this
routine.

ai_cb A pointer to the authorization indication callback routine, or a
null pointer if the application does not support authorization
indications. See section 6.4,
POSP_AR_AUTH_IND_CALLBACK, for details of this
routine.

ra_cb A pointer to the reauthorization request callback routine, or a
null pointer if the application does not support reauthorization
requests. See section, 6.6,
POSP_AR_REAUTH_RQ_CALLBACK for details of this
routine.

pi_cb A pointer to the pricing indication callback routine, or a null
pointer if the application does not support pricing indications.
See section 6.8, POSP_AR_PRICING_IND_CALLBACK, for
details of this routine.

cp_cb A pointer to the capabilities indication callback routine, or a
null pointer if the application does not support capabilities
indications. See section 6.10,
POSP_AR_CAPS_IND_CALLBACK, for details of this
routine.

6.2 POSP_AR_AUTH_RQ_CALLBACK
The application provides this function to handle information from OSP AuthorizationReque st
messages, and registers it during initialization by supplying the address of the function on the
osp_ar_register() call.

OpenOSP then calls this callback routine each time it receives an AuthorizationRequest from
an OSP client. The parameters passed to the routine provide information about the request.

The application must respond to the callback by calling osp_ar_auth_response().

28
OpenOSP Interface Specification

OSP_RC (OSPAPI *POSP_AR_AUTH_RQ_CALLBACK)
 (OSP_CORRELATOR corr,
 char *timestamp,
 OSP_CALL_ID *call_id_list,
 OSP_ADDRESS *source_info,
 OSP_ADDRESS *source_alt_list,
 OSP_ADDRESS *dest_info,
 OSP_ADDRESS *dest_alt_list,
 OSP_SERVICE_INFO *service,
 char *max_dests,
 OSP_TOKEN *token_list,
 OSP_AUTH_INFO *authentication_list,
 OSP_CLIENT_ID *client_id);

For details of the data structures OSP_CALL_ID, OSP_ADDRESS, OSP_SERVICE_INFO,
OSP_TOKEN, OSP_AUTH_INFO and OSP_CLIENT_ID, see section 3.4, Common data
structures and types.

Parameters:

corr A correlator to be passed back to OpenOSP on the subsequent
call to osp_ar_auth_response().

timestamp A null-terminated string containing the message’s timestamp.
This is a string in the format YYYY-MM-DDThh:mm:ssZ (the T
and Z are literal characters used as delimiters).

call_id_list A pointer to the first item in a list of OSP_CALL_ID
structures, each of which contains an H.323 call ID provided
by the client.

source_info A structure containing details about the source of the call, e.g.
the originating phone number.

source_alt_list A pointer to the first item in a list of OSP_ADDRESS
structures, each of which contains alternate information about
the source of the call, e.g. the address of the source gateway.
This may contain subscriber information, in which case the
settlement application should authenticate and authorize the
subscriber.

dest_info A structure containing details about the destination of the call,
e.g. the destination phone number.

dest_alt_list A pointer to the first item in a list of OSP_ADDRESS
structures, each of which contains alternate information about
the destination, e.g. the address of the termination gateway.

service A pointer to an OSP_SERVICE_INFO structure describing the
type of service requested. A null pointer indicates basic
internet telephony service, which is the only type of service
currently defined by [OSP].

29
OpenOSP Interface Specification

max_dests The maximum number of destinations to be returned.

token_list A pointer to the first item in a list of OSP_TOKEN structures,
each of which contains a authorization token.

authentication_list A pointer to the first item in a list of OSP_AUTH_INFO
structures, each of which contains a subscriber authentication
token.

client_id A structure containing the client IP address and the ‘cookie’
from any earlier client verification.

6.3 osp_ar_auth_response
When OpenOSP calls the settlement application’s implementation of
POSP_AR_AUTH_RQ_CALLBACK(), the application must respond by calling
osp_ar_auth_response(). This function uses the information provided to construct an OSP
AuthorizationResponse message, to be sent to the OSP client from which the request
originated. This provides routing information to allow the OSP client to route the requested
call, and authorization information for the call.

OSP_RC OSPAPI osp_ar_auth_response(OSP_CORRELATOR corr,
 OSP_STATUS *status,
 char *transaction_id,
 OSP_TOKEN *token_list,
 OSP_DESTINATION *dest_list,
 unsigned int sig_required);

For details of the data structures OSP_STATUS, OSP_DESTINATION and OSP_TOKEN, see
section 3.4, Common data structures and types.

Parameters:

corr The correlator supplied by OpenOSP on the corresponding
authorization request callback.

status A pointer to an OSP_STATUS structure that specifies the
status code and description that should be used to form the
AuthorizationResponse response.

transaction_id A null-terminated string containing an identifier assigned by
the application to this authorization. The format of this
parameter is defined by the application; OpenOSP does not
make use of it, but passes it back to the application on
subsequent calls in order to identify the transaction.

token_list A pointer to the first item in a list of OSP_TOKEN structures,
each of which contains an authorization token that is valid for
any of the destinations in the dest_list parameter.

30
OpenOSP Interface Specification

dest_list A pointer to the first item in a list of OSP_DESTINATION
structures, each of which contains details of a destination to
which service has been authorized.

sig_required Set this parameter to 1 if the server should S/MIME sign the
response, 0 if it should not.

6.4 POSP_AR_AUTH_IND_CALLBACK
The application provides this function to handle information from OSP
AuthorizationIndication messages, and registers it during initialization by supplying the
address of the function on the osp_ar_register() call.

OpenOSP then calls this function each time it receives an AuthorizationIndication from an
OSP client (requesting the application to verify authorization information received by a client
that is accepting an incoming call). The parameters passed to the routine provide information
about the indication.

The application must respond to the callback by calling osp_ar_auth_confirm().

OSP_RC (OSPAPI *POSP_AR_AUTH_IND_CALLBACK)
 (OSP_CORRELATOR corr,
 char *timestamp,
 char *role,
 OSP_CALL_ID *call_id,
 OSP_ADDRESS *source_info,
 OSP_ADDRESS *source_alt_list,
 OSP_ADDRESS *dest_info,
 OSP_ADDRESS *dest_alt_list,
 OSP_SERVICE_INFO *service,
 OSP_TOKEN *auth_token_list,
 OSP_CLIENT_ID *client_id);

For details of the data structures OSP_CALL_ID, OSP_ADDRESS, OSP_SERVICE_INFO,
OSP_TOKEN, and OSP_CLIENT_ID, see section 3.4, Common data structures and types.

Parameters:

corr A correlator to be passed back to OpenOSP on the subsequent
call to osp_ar_auth_confirm().

timestamp A null-terminated string containing the message’s timestamp.

role A null-terminated string describing the client’s role in the call.
This may take one of the following values:

• source The client is the source.

• destination The client is the destination.

• other The client is a system other than the source
or the destination.

31
OpenOSP Interface Specification

call_id A structure containing the H.323 call ID provided by the client.

source_info A pointer to a structure containing details about the source of
the call, e.g. the originating phone number.

source_alt_list A pointer to the first item in a list of OSP_ADDRESS
structures, each of which contains alternate information about
the source of the call, e.g. the address of the source gateway.

dest_info Pointer to a structure containing details about the destination of
the call, e.g. the destination phone number.

dest_alt_list A pointer to the first item in a list of OSP_ADDRESS
structures, each of which contains alternate information about
the destination, e.g. the address of the termination gateway.

service A pointer to an OSP_SERVICE_INFO structure describing the
type of service requested. A null pointer indicates basic
internet telephony service, which is the only type of service
currently defined by [OSP].

auth_token_list A pointer to the first item in a list of OSP_TOKEN structures,
each of which contains an authorization token.

client_id A structure containing the client IP address and the ‘cookie’
from any earlier client verification.

6.5 osp_ar_auth_confirm
When OpenOSP calls the settlement application’s implementation of
POSP_AR_AUTH_IND_CALLBACK(), requesting the application to verify authorization
information received by a client that is accepting an incoming call, the application must respond
by calling osp_ar_auth_confirm(). This function uses the information provided to construct an
OSP AuthorizationConfirmation message, to be sent to the OSP client from which the
indication originated. This indicates whether or not the authorization in the indication is valid.

OSP_RC OSPAPI osp_ar_auth_confirm(OSP_CORRELATOR corr,
 OSP_STATUS *status,
 char *valid_after,
 char *valid_until,
 unsigned int sig_required);

Parameters:

corr The correlator supplied by OpenOSP on the corresponding
authorization indication callback.

status A pointer to an OSP_STATUS structure that specifies the
status code and description that should be used to form the
AuthorizationConfirmation response.

32
OpenOSP Interface Specification

valid_after A null-terminated string containing the time that authorization
begins; a null pointer means immediately.

valid_until A null-terminated string containing the time that authorization
ends; a null pointer means that it is indefinite.

sig_required Set this parameter to 1 if the server should S/MIME sign the
response, 0 if it should not.

For details of the data structure OSP_STATUS, see section 3.4, Common data structures and
types.

6.6 POSP_AR_REAUTH_RQ_CALLBACK
The application provides this function to handle OSP ReauthorizationRequest messages, and
registers it during initialization by supplying the address of the function on the osp_ar_register()
call.

OpenOSP then calls this callback routine each time it receives a ReauthorizationRequest from
an OSP client. The parameters passed to the routine provide information about the request.

The application must respond to the callback by calling osp_ar_reauth_response().

typedef OSP_RC (OSPAPI *POSP_AR_REAUTH_RQ_CALLBACK)
 (OSP_CORRELATOR corr,
 char *timestamp,
 char *role,
 OSP_CALL_ID *call_id,
 OSP_ADDRESS *source_info,
 OSP_ADDRESS *source_alt_list,
 OSP_ADDRESS *dest_info,
 OSP_ADDRESS *dest_alt_list,
 char *transaction_id,
 OSP_USAGE_DETAIL *use_detail_list,
 OSP_TOKEN *auth_token_list,
 OSP_CLIENT_ID *client_id);

For details of the data structures OSP_CALL_ID, OSP_ADDRESS, OSP_USAGE_DETAIL,
OSP_TOKEN, and OSP_CLIENT_ID, see section 3.4, Common data structures and types.

Parameters:

corr A correlator to be passed back to OpenOSP on the subsequent
call to osp_ar_reauth_response().

timestamp A null-terminated string containing the message’s timestamp.

role A null-terminated string describing the client’s role in the call.
This may take one of the following values:

• source The client is the source.

• destination The client is the destination.

33
OpenOSP Interface Specification

• other The client is a system other than the source
or the destination.

call_id Structure containing the H.323 call ID provided by the client.

source_info Pointer to a structure containing details about the source of the
call, e.g. the originating phone number.

source_alt_list A pointer to the first item in a list of OSP_ADDRESS
structures, each of which contains alternate information about
the source of the call, e.g. the address of the source gateway.

dest_info Pointer to a structure containing details about the destination of
the call, e.g. the destination phone number.

dest_alt_list A pointer to the first item in a list of OSP_ADDRESS
structures, each of which contains alternate information about
the destination, e.g. the address of the termination gateway.

transaction_id A null-terminated string containing the transaction identifier
provided by the client from its previous authorization by the
server.

use_detail_list A pointer to the first item in a list of OSP_USAGE_DETAIL
structures, each of which contains usage details of the call, e.g.
the duration of the call and the reason it ended.

auth_token_list A pointer to the first item in a list of OSP_TOKEN structures,
each of which contains an authorization token.

client_id A structure containing the client IP address and the ‘cookie’
from any earlie r client verification.

6.7 osp_ar_reauth_response
When OpenOSP calls the settlement application’s implementation of
POSP_AR_REAUTH_RQ_CALLBACK(), the application must respond by calling
osp_ar_reauth_response(). This function uses the information provided to construct an OSP
ReauthorizationResponse message, to be sent to the OSP client from which the request
originates. This indicates acceptance or rejection of the request.

OSP_RC OSPAPI osp_ar_reauth_response(OSP_CORRELATOR corr,
 OSP_STATUS *status,
 char *transaction_id,
 OSP_DESTINATION *dest_list,
 unsigned int sig_required);

For details of the data structures OSP_STATUS and OSP_DESTINATION, see section 3.4,
Common data structures and types.

34
OpenOSP Interface Specification

Parameters:

corr The correlator supplied by OpenOSP on the corresponding
reauthorization request callback.

status A pointer to an OSP_STATUS structure that specifies the
status code and description that should be used to form the
ReauthorizationResponse response.

transaction_id A null-terminated string containing an identifier assigned by
the application to this reauthorization. The format of this
parameter is defined by the application; OpenOSP does not
make use of it, but passes it back to the application on
subsequent calls in order to identify the transaction.

dest_list A pointer to the first item in a list of OSP_DESTINATION
structures, each of which contains details of a destination to
which service has been authorized.

sig_required Set this parameter to 1 if the server should S/MIME sign the
response, 0 if it should not.

6.8 POSP_AR_PRICING_IND_CALLBACK
The application provides this function to handle OSP PricingIndication messages, and registers
it during initialization by supplying the address of the function on the osp_ar_register() call.

OpenOSP then calls this callback routine each time it receives a PricingIndication from an
OSP client. The parameters passed to the routine provide information about the indication.

The application must respond to the callback by calling osp_ar_pricing_confirm().

OSP_RC (OSPAPI *POSP_AR_PRICING_IND_CALLBACK)
 (OSP_CORRELATOR corr,
 char *timestamp,
 OSP_ADDRESS *source_info,
 OSP_ADDRESS *dest_info,
 char *currency,
 char *amount,
 char *increment,
 char *unit,
 OSP_SERVICE_INFO *service,
 char *valid_after,
 char *valid_until,
 OSP_CLIENT_ID *client_id);

For details of the data structures OSP_ADDRESS, OSP_SERVICE_INFO and
OSP_CLIENT_ID, see section 3.4, Common data structures and types.

Parameters:

corr A correlator to be passed back to OpenOSP on the subsequent
call to osp_ar_pricing_confirm().

35
OpenOSP Interface Specification

timestamp A null-terminated string containing the message’s timestamp.

source_info Pointer to a structure containing details about the source of the
call, e.g. the originating phone number.

dest_info Pointer to a structure containing details about the destination of
the call, e.g. the destination phone number.

currency A null-terminated string describing the currency used for
pricing.

amount A null-terminated string containing the price of the number of
units specified in ‘increment.’

increment A null-terminated string containing the number of usage units
that are available for the specified amount of currency.

unit A null-terminated string containing the units of use by which
pricing is measured, for example, seconds, packets, bytes.

service A pointer to an OSP_SERVICE_INFO structure describing the
type of service. A null pointer indicates basic internet
telephony service, which is the only type of service currently
defined by [OSP].

valid_after A null-terminated string containing the time that new pricing
begins; a null pointer means immediately.

valid_until A null-terminated string containing the duration of pricing
validity; a null pointer means that it is indefinite.

client_id A structure containing the client IP address and the ‘cookie’
from any earlier client verification.

Example: If ‘currency’ is ‘USD,’ ‘amount’ is ‘0.5,’ ‘increment’ is ‘60,’ and ‘unit’ is ‘s,’ this
indicates a cost of 50 cents per minute to the destination specified in ‘dest_info.’

6.9 osp_ar_pricing_confirm
When OpenOSP calls the settlement application’s implementation of
POSP_AR_PRICING_IND_CALLBACK(), the application must respond by calling
osp_ar_pricing_confirm(). This function uses the information provided to construct an OSP
PricingConfirmation message, to be sent to the OSP client from which the indication
originated. This indicates acceptance or rejection of the information in the indication.

OSP_RC OSPAPI osp_ar_pricing_confirm(OSP_CORRELATOR corr,
 OSP_STATUS *status,
 unsigned int sig_required);

36
OpenOSP Interface Specification

Parameters:

corr The correlator supplied by OpenOSP on the corresponding
pricing indication callback.

status A pointer to an OSP_STATUS structure that specifies the
status code and description that should be used to form the
PricingConfirmation response.

sig_required Set this parameter to 1 if the server should S/MIME sign the
response, 0 if it should not.

6.10 POSP_AR_CAPS_IND_CALLBACK
The application provides this function to handle OSP CapabilitiesIndication messages, and
registers it during initialization by supplying the address of the function on the osp_ar_register()
call.

OpenOSP then calls this callback routine each time it receives a CapabilitiesIndication from
an OSP client. The parameters passed to the routine provide information about the indication.

The application must respond to the callback by calling osp_ar_caps_confirm().

OSP_RC (OSPAPI *POSP_AR_CAPS_IND_CALLBACK)
 (OSP_CORRELATOR corr,
 OSP_DEVICE_INFO *dev_info_list,
 char *osp_version,
 OSP_CAPS *caps_list,
 OSP_RESOURCE *resource_list,
 OSP_CLIENT_ID *client_id);

For details of the data structure OSP_CLIENT_ID, see section 3.4, Common data structures and
types.

Parameters:

corr A correlator to be passed back to OpenOSP on the subsequent
call to osp_ar_caps_confirm().

dev_info_list A pointer to the first item in a list of OSP_DEVICE_INFO
structures, each of which describes an address type that is
supported by the client.

osp_version A null-terminated string containing the highest version of the
OSP protocol that the client supports.

caps_list A pointer to the first item in a list of OSP_CAPS structures,
each of which describes an OSP service supported by the client
e.g. AuthorizationIndication, UsageIndication.

37
OpenOSP Interface Specification

resource_list A pointer to the first item in a list of OSP_RESOURCE
structures, each of which describes a protocol that is supported
by the client.

client_id A structure containing the client IP address and the ‘cookie’
from any earlier client verification.

6.10.1 OSP_DEVICE_INFO

This structure provides data corresponding to the DeviceInfo element described in [OSP].

typedef struct osp_device_info
{
 struct osp_device_info *next;
 char *type;
 char *data;
} OSP_DEVICE_INFO;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

type A null-terminated string describing the type of the device. The
following values are valid: e164, h323, url, email, transport,
serialnumber, or customerId.

data A null-terminated string containing the data supplied in the
DeviceInfo element.

6.10.2 OSP_CAPS

This structure contains the name of a single OSP service.

typedef struct osp_caps
{
 struct osp_caps *next;
 char *cap_name;
} OSP_CAPS;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

cap_name A null-terminated string that contains the name of a particular
OSP service; for example, AuthorizationRequest or
UsageIndication.

6.10.3 OSP_RESOURCE

This structure provides data corresponding to the Resources element described in [OSP].

38
OpenOSP Interface Specification

typedef struct osp_resource
{
 struct osp_resource *next;
 OSP_DATA_RATE *data_rate;
 char *almost_out;
 OSP_SUPP_PROTOCOL *supp_protocol_list;
} OSP_RESOURCE;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

data_rate A pointer to the first item in a list of OSP_DATA_RATE
structures, each of which contains details of a supported data
rate.

almost_out A null-terminated string indicating whether or not the
originating client is almost out of resources. This field should
take one of the values “true” and “false”.

supp_protocol_list A pointer to the first item in a list of OSP_SUPP_PROTOCOL
structures, each of which contains details of a supported
protocol.

6.10.4 OSP_SUPP_PROTOCOL

This structure provides data corresponding to the SupportedProtocol element described in
[OSP].

typedef struct osp_supp_protocol
{
 struct osp_supp_protocol *next;
 OSP_PROTOCOL_TYPE *type;
 OSP_DATA_RATE *data_rates;
} OSP_SUPP_PROTOCOL;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

type A null-terminated string describing the type of protocol. The
following values are valid: H323, SIP, SS7 or Other.

data_rates A pointer to the first item in a list of OSP_DATA_RATE
structures, each of which contains details of an available data
rate for this protocol.

6.10.5 OSP_DATA_RATE

This structure provides data corresponding to the DataRate element described in [OSP].

39
OpenOSP Interface Specification

typedef struct osp_data_rate
{
 struct osp_data_rate *next;
 char *num_channels;
 char *bandwidth;
} OSP_DATA_RATE;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

num_channels A null-terminated string indicating the number of channels
available. This parameter may be null, which indicates that the
number of channels was not specified.

bandwidth A null-terminated string indicating the bandwidth, in bits/sec,
of each channel, or the total bandwidth if the number of
channels is not specified.

6.11 osp_ar_caps_confirm
When OpenOSP calls the settlement application’s implementation of
POSP_AR_CAPS_CALLBACK(), the application must respond by calling
osp_ar_caps_confirm(). This function uses the information provided to construct an OSP
CapabilitiesConfirmation message, to be sent to the OSP client from which the indication
originated. This allows the application to specify the OSP capabilities that clients should use to
communicate with the server.

OSP_RC OSPAPI osp_ar_caps_confirm(OSP_CORRELATOR corr,
 OSP_STATUS *status,
 char *osp_version,
 OSP_SERVICE *service_list,
 OSP_CERTIFICATE *cert_list,
 char *device_id,
 unsigned int sig_required);

Parameters:

corr The correlator supplied by OpenOSP on the corresponding
capabilities indication callback.

status A pointer to an OSP_STATUS structure that specifies the
status code and description that should be used to form the
CapabilitiesConfirmation response.

osp_version A null-terminated string containing the negotiated version of
the OSP protocol that will be used.

service_list A pointer to the first item in a list of OSP_SERVICE
structures, each of which contains details of a particular service
supported by the OSP server.

40
OpenOSP Interface Specification

cert_list A pointer to the first item in a list of OSP_CERTIFICATE
structures, each of which contains a public key certificate. The
first certificate in the list is the certificate that the server will
use to sign any authorization tokens that it supplies. This is
followed by any intermediate certificates, in order, and the list
concludes with the root authority’s certificate.

device_id Server device identifier.

sig_required Set this parameter to 1 if the server should S/MIME sign the
response, 0 if it should not.

6.11.1 OSP_SERVICE

This structure provides data corresponding to the OSPService element described in [OSP].

typedef struct osp_service
{
 struct osp_service *next;
 char *capability;
 OSP_SERVICE_URL *url_list;
 unsigned int sig_required;
} OSP_SERVICE;

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

capability A null-terminated string containing the name of an OSP service
supported by the server e.g. AuthorizationIndication,
UsageIndication.

url_list A pointer to the first item in a list of OSP_SERVICE_URL
structures, each of which contains a URL that the client may
use to obtain the OSP service specified in the ‘capability’
member. This member may be null.

sig_required 1 indicates that the client should sign requests for the service
specified in ‘capability’ when it sends them to the URLs
identified in ‘url_list.’ This member is otherwise set to zero.

6.11.2 OSP_SERVICE_URL

This structure contains a single URL that points to an OSP server.

typedef struct osp_service_url
{
 struct osp_service_url *next;
 char *url;
} OSP_SERVICE_URL;

41
OpenOSP Interface Specification

Members:

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

url A null-terminated string that contains a URL, which identifies
a particular OSP server.

6.11.3 OSP_CERTIFICATE

This structure provides data corresponding to the Certificate element described in [OSP].

typedef struct osp_certificate
{
 struct osp_certificate *next;
 char *encoding;
 int cert_len;
 char *cert_data;
} OSP_CERTIFICATE;

Members :

next A pointer to the next item if this structure is in a list, or a null
pointer if there are no further items.

encoding A null-terminated string that describes the encoding in which
the certificate is stored. One of the following:

• cdata (XML CDATA format)

• base64

cert_len The size in bytes of the certificate data.

cert_data A string containing the certificate data.

42
OpenOSP Interface Specification

7 Subscriber Authentication API
The Subscriber Authentication (SA) API allows OpenOSP to request your application to
authenticate subscribers and check whether they are entitled to use the facilities of the OSP
server (for example to authenticate users with mobile telephones who are calling from outside
their usual network, and to verify whether they are permitted to do so).

7.1 osp_sa_register
The application calls this function to register a callback routine that will handle information
from OSP SubscriberAuthenticationRequest messages. OpenOSP then calls this SA callback
routine each time it receives a SubscriberAuthenticationRequest from an OSP client.

If the application issues more than one call to this function, the parameter provided in the most
recent call overrides those provided in previous calls.

The application may deregister the callback at any time by calling this function with a null
pointer in place of the function pointer. After deregistering the callback, the application will not
receive any further subscriber authentication requests unless it registers a new SA callback
routine.

OSP_RC OSPAPI osp_sa_register(POSP_SA_CALLBACK sa_cb);

sa_cb A pointer to the settlement application’s SA callback routine.
See section 7.2, POSP_SA_CALLBACK, for details of this
routine.

 To deregister the existing callback routine, the application
supplies a null pointer.

7.2 POSP_SA_CALLBACK
The application provides this function to handle information from OSP
SubscriberAuthenticationRequest messages, and registers it during initialization by supplying
the address of the function on the osp_sa_register() call.

OpenOSP then calls this function each time it receives a SubscriberAuthenticationRequest
from an OSP client.

The settlement application must respond to the callback by calling osp_sa_response().

OSP_RC (OSPAPI *POSP_SA_CALLBACK) (OSP_CORRELATOR corr,
 char *timestamp,
 OSP_ADDRESS *source_info,
 OSP_ADDRESS *source_alt_list,
 OSP_ADDRESS *dest_info,
 OSP_SERVICE_INFO *service,
 OSP_AUTH_INFO *subs_authen_info,
 OSP_CLIENT_ID *client_id);

43
OpenOSP Interface Specification

For details of the data structures OSP_ADDRESS, OSP_SERVICE_INFO, OSP_AUTH_INFO
and OSP_CLIENT_ID, see section 3.4, Common data structures and types.

Parameters:

corr A correlator to be passed back to OpenOSP on the subsequent
call to osp_sa_response().

timestamp A null-terminated string containing the message’s timestamp.

source_info Pointer to a structure containing details about the source of the
call, e.g. the originating phone number.

source_alt_list A pointer to the first item in a list of OSP_ADDRESS
structures, each of which contains alternate information about
the source of the call, e.g. the address of the source gateway.

dest_info Pointer to a structure containing details about the destination of
the call, e.g. the destination phone number.

service A pointer to an OSP_SERVICE_INFO describing the type of
service requested. A null pointer indicates basic internet
telephony service, which is the only type of service currently
defined by [OSP].

subs_authen_info A pointer to an OSP_AUTH_INFO structure containing a
subscriber authentication token. This parameter may be
NULL, which indicates that the corresponding
SubscriberAuthenticationRequest did not include a
subscriber authentication token.

client_id A structure containing the client IP address and the ‘cookie’
from any earlier client verification.

7.3 osp_sa_response
When OpenOSP calls the settlement application’s implementation of
POSP_SA_CALLBACK(), the application must respond by calling osp_sa_response(). This
function uses the information provided to construct a SubscriberAuthenticationResponse
message, to be sent to the OSP client from which the request originated.

OSP_RC OSPAPI osp_sa_response(OSP_CORRELATOR corr,
 OSP_STATUS *status,
 OSP_TOKEN *subs_token_list,
 OSP_CREDIT_AMOUNT *credit_amount,
 OSP_CREDIT_TIME *credit_time,
 unsigned int sig_required);

For details of the data structures OSP_STATUS and OSP_TOKEN, see section 3.4, Common
data structures and types.

44
OpenOSP Interface Specification

Parameters:

corr The correlator supplied by OpenOSP on the corresponding
subscriber authentication callback.

status A pointer to an OSP_STATUS structure that specifies the
status code and description that should be used to form the
SubscriberAuthenticationResponse response.

subs_token_list A pointer to the first item in a list of OSP_TOKEN structures,
each of which contains a subscriber authentication token.

credit_amount A pointer to an OSP_CREDIT_AMOUNT structure indicating
the amount of prepaid credit remaining for the authenticated
subscriber.

credit_time A pointer to an OSP_CREDIT_TIME structure indicating the
length of time for which the authenticated prepaid subscriber
can maintain a call to the destination that was specified by the
corresponding SubscriberAuthenticationRequest.

sig_required Set this parameter to 1 if the server should S/MIME sign the
response, 0 if it should not.

7.3.1 OSP_CREDIT_AMOUNT

This structure provides data describing the amount of credit remaining for a prepaid subscriber.

typedef struct osp_credit_amount
{
 char *currency;
 char *amount;
} OSP_CREDIT_AMOUNT;

Members:

currency A null-terminated string specifying the currency in which the
amount is expressed, for example “USD”.

amount A null-terminated string specifying the amount of credit
remaining as a decimal number.

7.3.2 OSP_CREDIT_TIME

This structure provides data describing the call duration that is available for a prepaid
subscriber, given the call destination and the subscriber’s remaining credit.

typedef struct osp_credit_time
{
 char *amount;
 char *increment;
 char *unit;
} OSP_CREDIT_TIME;

45
OpenOSP Interface Specification

Members:

amount A null-terminated string containing a number which, when
multiplied by ‘increment,’ gives the number of units of service
available.

increment A null-terminated string containing a number which, when
multiplied by ‘amount,’ gives the number of units of service
available.

unit A null-terminated string containing the units of use by which
available credit time is expressed, for example seconds or
minutes.

46
OpenOSP Interface Specification

8 Security API
The Security API is implemented by the Crypto and Certificates Manager (CCM). It is used by
the OpenOSP stack and the sample application to

• create and verify signatures

• retrieve the server’s certificate authority (CA) certificate.

If the OSP server is also acting as a CA for SCEP clients, then the API will also be used to
create certificates.

8.1 ccm_init
The OpenOSP stack calls this function to initialize the CCM component. Apart from performing
its own internal initialization during this call, CCM also configures various aspects of the SSL
library. The SSL library is configured to retrieve certificates using CCM’s certificate store and
to use the configured certificate, private key, cipher list and client verification mode.

OSP_RC ccm_init(SSL_CTX *ssl_ctx,
 PCCM_SSL_VERIFY_CALLBACK ssl_verify_cb);

Parameters:

ssl_ctx A pointer to the SSL_CTX structure to configure.

ssl_verify_cb A callback function that CCM will call to verify clients that
connect via SSL.

8.2 PCCM_SSL_VERIFY_CALLBACK
The OpenOSP stack provides this function to receive callbacks from CCM when a client is
attempting to connect via SSL. The callbacks are used to implement part of the client
verification functionality that OpenOSP provides to the application. See section 4.5,
POSP_CLIENT_VERIFY_CALLBACK, for a description of the client verification facilities
that are available to the application.

int (*PCCM_SSL_VERIFY_CALLBACK) (SSL *ssl,
 char *cert,
 unsigned int cert_len,
 unsigned int chain_len,
 unsigned int chain_pos);

Parameters:

ssl A pointer to the SSL connection structure associated with the
connection being made.

cert One of the certificates in the client’s certificate chain, in ASN.1
DER-encoded X.509 format.

47
OpenOSP Interface Specification

cert_len The size in bytes of the certificate data.

chain_len The number of certificates in the client’s certificate chain.

chain_pos The position of the supplied certificate in the chain, with 0
being the client’s certificate.

8.3 ccm_term
The OpenOSP stack calls this function to terminate the CCM component.

OSP_RC ccm_term(void);

Parameters:

None.

8.4 ccm_pkcs7_sign
OpenOSP uses this function to sign OSP responses, if required by the application, and to sign
SCEP responses. The application may also use this function to sign tokens and other data.

The caller supplies a distinguished name that identifies the certificate and private key that are to
be used for the signing operation. This distinguished name corresponds to one of the identities
set up in the OpenOSP configuration file.

OSP_RC ccm_pkcs7_sign(char *subj_name,
 char *sdata,
 unsigned int sdata_len,
 unsigned int digest,
 STACK_OF(X509_ATTRIBUTE) *auth_attribs,
 unsigned int flags,
 char **sig_buf,
 unsigned int *sig_len);

Parameters:

subj_name The distinguished name of the identity to sign as.

sdata A pointer to the data that is to be signed.

sdata_len The number of bytes to be signed.

digest The digest algorithm to be used. The following values are
valid:

• CCM_DIGEST_SHA1: the SHA-1 digest.

• CCM_DIGEST_MD5: the MD5 digest.

• CCM_DIGEST_DEFAULT: CCM’s default digest, which
is MD5.

48
OpenOSP Interface Specification

auth_attribs A list of authenticated attributes to include in the resulting
PKCS#7 SignedData structure. The X509_ATTRIBUTE type
and the STACK_OF(…) macro are imported from OpenSSL.

flags Flags that control the behavior of the function. This parameter
may be zero, or it may take the following value:

• CCM_FLAG_PKCS7_D: the resulting structure should be
detached (in other words, it contains no data).

sig_buf Receives a pointer to a buffer containing the resulting ASN.1
DER-encoded PKCS#7 SignedData structure. The caller must
free this memory.

sig_len Receives the number of bytes in the returned PKCS#7
SignedData structure.

8.5 ccm_pkcs7_verify
OpenOSP uses this function to verify signed OSP requests and SCEP requests. The application
may also use this function to verify signatures on tokens and other data.

OSP_RC ccm_pkcs7_verify(char *p7_asn1,
 unsigned int p7_asn1_len,
 char *indata_buf,
 unsigned int indata_len,
 unsigned int flags,
 STACK_OF(X509_ATTRIBUTE) **auth_attribs,
 char **ver_buf,
 unsigned int *ver_len,
 char **cert_buf,
 unsigned int *cert_len);

Parameters:

p7_asn1 A pointer to the ASN.1 DER-encoded PKCS#7 SignedData
structure that is to be verified.

p7_asn1_len The number of bytes in the PKCS#7 SignedData structure.

indata_buf Raw data to be verified (required only if a detached
SignedData structure is supplied).

indata_len The number of bytes of raw data supplied.

flags Flags that control the behavior of the function. This parameter
may be zero, or it may be any combination (logical OR) of the
following values:

• CCM_FLAG_PKCS7_D: signifies a detached PKCS#7
SignedData structure.

49
OpenOSP Interface Specification

• CCM_FLAG_SELF_SIGNED: allows a single self-signed
certificate in the certificate chain, as found in an SCEP
PKCSReq message. A single self-signed certificate that is
not a CA certificate would normally fail the certificate
verification process.

auth_attribs Receives a list of authenticated attributes from the supplied
PKCS#7 SignedData structure. The X509_ATTRIBUTE type
and the STACK_OF(…) macro are imported from OpenSSL.

ver_buf Receives a pointer to a buffer containing the raw data that was
verified. The caller must free this memory. This parameter
may be a null pointer.

ver_len Receives the number of bytes of raw data that were verified.
This parameter may be a null pointer.

cert_buf Receives a pointer to a buffer containing the single self-signed
certificate, if present. This is in ASN.1 DER-encoded X.509
format, and is returned only if CCM_FLAG_SELF_SIGNED is
specified. The caller must free this memory. This parameter
may be a null pointer.

cert_len Receives the number of bytes in the single self-signed
certificate, if present. This parameter may be a null pointer.

8.6 ccm_pkcs7_encrypt
OpenOSP uses this function to encrypt SCEP responses. The application may also use this
function to encrypt tokens and other data.

The caller supplies a distinguished name that identifies the certificate and private key that are to
be used for the encryption operation. This distinguished name corresponds to one of the
identities set up in the OpenOSP configuration file.

OSP_RC ccm_pkcs7_encrypt(char *subj_name,
 char *cert,
 unsigned int cert_len,
 char *edata,
 unsigned int edata_len,
 unsigned int cipher,
 char **enc_buf,
 unsigned int *enc_len);

Parameters:

subj_name The distinguished name of the identity to encrypt as.

cert The certificate to use for encryption, in ASN.1 DER-encoded
X.509 format. This is used only if subj_name is a null pointer.

50
OpenOSP Interface Specification

cert_len The number of bytes in the supplied certificate. This is used
only if subj_name is a null pointer.

edata A pointer to the raw data to be encrypted.

edata_len The number of bytes to be encrypted.

cipher The cipher algorithm to be used. The following values are
valid:

• CCM_CIPHER_DES_CBC: the DES-CBC cipher.

• CCM_CIPHER_RC2_CBC: the RC2-CBC cipher.

enc_buf Receives a pointer to a buffer containing the resulting ASN.1
DER-encoded PKCS#7 EnvelopedData structure. The caller
must free this memory.

enc_len Receives the number of bytes in the returned PKCS#7
EnvelopedData structure.

8.7 ccm_pkcs7_decrypt
OpenOSP uses this function to decrypt SCEP requests. The application may also use this
function to decrypt tokens and other data.

OSP_RC ccm_pkcs7_decrypt(char *p7_asn1,
 unsigned int p7_asn1_len,
 char *subj_name,
 char **dec_buf,
 unsigned int *dec_len);

Parameters:

p7_asn1 A pointer to the ASN.1 DER-encoded PKCS#7 EnvelopedData
structure that is to be decrypted.

p7_asn1_len The number of bytes in the PKCS#7 EnvelopedData structure.

subj_name The distinguished name of the identity to decrypt as (a
PKCS#7 EnvelopedData structure may be encoded to enable
decryption by multiple parties).

dec_buf Receives a pointer to a buffer containing the decrypted data.
The caller must free this memory.

dec_len Receives the number of bytes in the decrypted data.

51
OpenOSP Interface Specification

8.8 ccm_get_cert
This function is called by OpenOSP to obtain certificates from the CCM certificate store. In
particular, it is used to obtain the server’s certificate authority (CA) certificate, which is
returned in response to an SCEP GetCACert request. The application may also use this function
to obtain certificates if required.

OSP_RC ccm_get_cert(char *subj_name,
 char **cert_buf,
 unsigned int *cert_len);

Parameters:

subj_name The distinguished name of the entity whose certificate is to be
returned.

cert_buf Receives a pointer to a buffer containing the required X.509
certificate, in ASN.1 DER-encoded form.

cert_len Receives the number of bytes in the certificate.

8.9 ccm_get_cert_chain
This function is called by the sample application to obtain the full certificate chain used for
token signing. The certificate chain is returned to clients in OSP CapabilitiesConfirmation
messages.

OSP_RC ccm_get_cert_chain(char *subj_name,
 OSP_CERTIFICATE **cert_chain);

Parameters:

subj_name The distinguished name of the entity whose certificate is to be
returned.

cert_chain Receives a pointer to a null-terminated list of
OSP_CERTIFICATE structures, containing all of the
certificates in the specified entity’s certificate chain. The caller
must free this memory by calling ccm_free_cert_chain().

8.10 ccm_free_cert_chain
This function is called by the sample application to free a certificate chain that was previously
obtained from a call to ccm_get_cert_chain().

void ccm_free_cert_chain(OSP_CERTIFICATE *chain);

Parameters:

chain A pointer to a null-terminated list of OSP_CERTIFICATE
structures that are to be freed.

52
OpenOSP Interface Specification

8.11 ccm_request_new_cert
This function is called by OpenOSP to issue a new certificate on behalf of an SCEP client.
CCM does the processing asynchronously and returns the resulting certificate on a callback. As
long as ccm_request_new_cert() returns OSP_SUCCESS, the new certificate callback is called
regardless of whether or not the certificate was issued successfully.

OSP_RC ccm_request_new_cert(char *req_asn1,
 unsigned int req_asn1_len,
 char *trans_id,
 char *ca_name,
 PCCM_NEW_CERT_CALLBACK cert_cb,
 void *corr);

Parameters:

req_asn1 A pointer to a buffer that contains a PKCS #10 certificate
request, in ASN.1 DER-encoded form.

req_asn1_len The number of bytes in the request.

trans_id A SCEP transaction ID, represented as a string of ASCII hex
digits. This value is checked against the MD5 digest of the
public key in the certificate request and an error is returned if
the two do not match. This parameter may be a null pointer if
the check is not required.

ca_name The distinguished name of the certificate authority that is to
issue the new certificate.

cert_cb A callback function that CCM will call when it has completed
the process of issuing a new certificate.

corr A correlator that CCM will pass back when it calls the supplied
callback function.

8.12 PCCM_NEW_CERT_CALLBACK
The OpenOSP stack provides this function to receive a callback from CCM when the process of
issuing a new certificate is complete. The callback provides the newly-issued certificate and the
OpenOSP stack returns it to a waiting SCEP client.

int (*PCCM_NEW_CERT_CALLBACK) (void *corr,
 char *x509_asn1,
 unsigned int x509_asn1_len);

Parameters:

corr The correlator passed to ccm_request_new_cert().

53
OpenOSP Interface Specification

x509_asn1 If a new certificate was successfully issued, this parameter
points to it, in ASN.1 DER-encoded X.509 format. The
memory is valid only for the duration of this function call and
is freed by CCM. If the certificate was not issued successfully,
this parameter is a null pointer.

x509_asn1_len The length of the newly-issued certificate.

8.13 ccm_random
This function is called by OpenOSP and the sample application to obtain random bytes for
various purposes. The OpenOSP sample implementation of this function provides an
abstraction from OpenSSL’s random number generator.

If a hardware random number generator is available, ccm_random() can be easily modified to
access that directly. Alternatively, OpenSSL’s RAND API could be redirected to the hardware
random number source if this is more convenient.

void ccm_random(void *buffer,
 int buf_len);

Parameters:

buffer A pointer to a buffer that will receive random bytes.

buf_len The number of bytes of random data to be placed in the
supplied buffer.

54
OpenOSP Interface Specification

9 Resource API
The core OpenOSP stack uses the Resource API for memory management and to control thread
creation and destruction. The API is implemented by the Resource Manager (RM) and provides
functions to

• allocate and free memory for internal data structures

• allocate, reallocate, and free memory for general use

• determine whether a new thread can be created and indicate that a thread is to be ended,
giving RM control over the total number of threads in existence.

9.1 rm_init
OpenOSP calls this function to initialize the RM component.

OSP_RC rm_init(void);

Parameters:

None.

9.2 rm_term
OpenOSP calls this function to terminate the RM component.

void rm_term(void);

Parameters:

None.

9.3 rm_get_mem
This function provides general purpose memory allocation to the OpenOSP stack and its
associated components. If the function succeeds, the return value is a pointer to a memory
block of at least the requested size. If the function fails, the return value is a null pointer.

void* rm_get_mem(unsigned int size);

Parameters:

size The number of bytes of memory required.

9.4 rm_release_mem
This function allows the OpenOSP stack or one of its associated components to release memory
that was obtained with a call to rm_get_mem().

55
OpenOSP Interface Specification

OSP_RC rm_release_mem(void *mem);

Parameters:

mem A pointer to the memory that is no longer required.

9.5 rm_realloc_mem
The OpenOSP stack or an external application calls this function to change the amount of
memory previously allocated in a call to rm_get_mem().

If the function succeeds, the return value is a pointer to a memory block of at least the specified
size. In this case, the new memory block contains a copy of the contents of the original memory
block (this is truncated if the new memory block is smaller) and the original block is released
automatically. If the function fails, the return value is a null pointer and the original memory
block remains valid.

void* rm_realloc_mem(void *mem,
 unsigned int new_size);

Parameters:

mem A pointer to the previously-allocated memory.

new_size The number of bytes required for the new memory block.

9.6 rm_get_structure
The OpenOSP stack calls this function to obtain memory for its internal data structures. If the
function succeeds, the return value is a pointer to a memory block of at least the specified size.
If the function fails, the return value is a null pointer.

This function allows RM to limit the total number of structures of each type that are in
existence, if required.

void* rm_get_structure(unsigned int size,
 unsigned int type);

Parameters:

size The number of bytes of memory required.

type The type of internal structure for which the memory will be
used. The following values are valid:

• RM_THREAD_INFO: a thread information structure;

• RM_CONN_INFO: a connection information structure;

• RM_TRANS_INFO: a transaction information structure.

56
OpenOSP Interface Specification

9.7 rm_release_structure
The OpenOSP stack calls this function to release memory that was obtained with a call to
rm_get_structure().

OSP_RC rm_release_structure(void *mem,
 unsigned int type);

Parameters:

mem A pointer to the memory that is no longer required.

type The type of internal structure that is being freed. Any of the
‘type’ values specified for rm_get_structure() are valid here.

9.8 rm_request_thread_create
The OpenOSP stack calls this function to request permission from RM to create a new thread.
This allows RM to limit the total number of threads of each type that are in existence, if
required.

OSP_RC rm_request_thread_create(int type);

Parameters:

type The type of thread that the caller wishes to create. The
following values are valid:

• RM_WORKER_THREAD: an internal OpenOSP thread;

• RM_LAM_THREAD: an internal LDAP access manager
(LAM) thread.

9.9 rm_notify_thread_exit
The OpenOSP stack calls this function to notify RM that a thread is about to exit. This allows
RM to keep its thread counts up-to-date.

OSP_RC rm_notify_thread_exit(int type);

Parameters:

type The type of thread that is about to exit. Any of the ‘type’ values
specified for rm_request_thread_create() are valid here.

57
OpenOSP Interface Specification

10 Secure Sockets Layer (SSL) API
The SSL API is used to communicate with OSP clients using SSL or TLS. It is a subset of the
API defined by the OpenSSL open source SSL / TLS implementation. If you intend to use a
different SSL / TLS implementation with OpenOSP, the implementation must provide this API.

Unless otherwise indicated, all of the SSL library functions return 1 on success and 0 on failure.

10.1 Configuration functions
This section describes the SSL API functions that OpenOSP uses during initialization and
termination to set up the SSL library.

10.1.1 SSL_library_init

This function initializes the SSL library.

int SSL_library_init(void);

Parameters:

None.

10.1.2 SSL_load_error_strings

This function instructs the library to load into memory a set of plain-text descriptions of error
codes that ERR_print_errors_fp() can use later.

void SSL_load_error_strings(void);

Parameters:

None.

10.1.3 CRYPTO_set_mem_functions

This function sets the allocation, reallocation and freeing functions that the SSL library should
use for memory management. If this function is not called, the SSL library should default to
using the standard C functions malloc(), realloc() and free().

void CRYPTO_set_mem_functions(char *(*malloc_fn)(),
 char *(*realloc_fn)(),
 void (*free_fn)());

Parameters:

malloc_fn A pointer to the replacement function for malloc(). The
prototype is the same as that of the standard C routine.

58
OpenOSP Interface Specification

realloc_fn A pointer to the replacement function for realloc(). The
prototype is the same as that of the standard C routine.

free_fn A pointer to the replacement function for free(). The prototype
is the same as that of the standard C routine.

10.1.4 CRYPTO_set_id_callback

This function sets a callback that the SSL library should use to find the current thread ID.

void CRYPTO_set_id_callback(unsigned long (*func)(void));

Parameters:

func The callback function. This takes no parameters and returns
the current thread ID.

10.1.5 CRYPTO_set_locking_callback

This function sets a callback that the SSL library should use to lock memory accesses in a
multithreaded environment. The SSL library should define CRYPTO_NUM_LOCKS to be the
number of locks that it requires so that OpenOSP may initialize them at startup.

void CRYPTO_set_locking_callback(void (*func)(int mode, int type, const char
*file, int line));

Parameters:

func The callback function. This takes the following parameters:

• mode: this is set to CRYPTO_LOCK if the SSL library
wishes to lock the specified lock; CRYPTO_UNLOCK
otherwise.

• type: a zero-based index identifying the lock to manipulate.

• file: a null-terminated string containing the name of the file
in which the caller’s source code resides (for debug
purposes only).

• line: the line number on which the caller’s source code
resides (for debug purposes only).

59
OpenOSP Interface Specification

10.1.6 SSLv23_server_method

This function returns a library-defined pointer to a set of ‘methods’ that may be passed to
SSL_CTX_new(). These methods define the SSL library’s internal functions that are to be used
for handshaking and data transfer using SSLv3 and TLSv1.

SSL_METHOD *SSLv23_server_method(void);

Parameters:

None.

10.1.7 SSL_CTX_new

This function returns a pointer to a new (library-defined) SSL_CTX structure. If the function
fails, the return value is a null pointer.

Only one SSL_CTX structure is created by OpenOSP; it contains the SSL / TLS session ID
cache and is also used as a template for new SSL structures created with SSL_new().

SSL_CTX *SSL_CTX_new(SSL_METHOD *meth);

Parameters:

meth A pointer to a method structure, obtained from
SSLv23_server_method().

10.1.8 SSL_CTX_free

This function frees all the memory associated with an SSL_CTX structure.

void SSL_CTX_free(SSL_CTX *ctx);

Parameters:

ctx A pointer to the SSL_CTX structure to be freed.

10.1.9 SSL_CTX_set_options

This functions allows various options to be set that affect the operation of connections based on
a particular SSL_CTX structure. The return value is the new state of the options flags.

long SSL_CTX_set_options(SSL_CTX *ctx, long larg);

Parameters:

ctx A pointer to the SSL_CTX structure on which to operate.

larg The options to set. This may be zero, or it may take the
following value:

• SSL_OP_NO_SSLv2 disables SSLv2 support

60
OpenOSP Interface Specification

10.1.10 SSL_CTX_sess_set_cache_size

This function sets the size of the session cache for a particular SSL_CTX structure. The session
cache is used by the SSL library to implement SSL / TLS session re-use. The return value is the
previous size of the session cache.

long SSL_CTX_sess_set_cache_size (SSL_CTX *ctx,
 long larg);

Parameters:

ctx A pointer to the SSL_CTX structure on which to operate.

larg The maximum number of sessions allowed in the cache.

10.1.11 SSL_CTX_set_cipher_list

This function sets the list of ciphers that the SSL library should use for connections based on a
particular SSL_CTX structure.

int SSL_CTX_set_cipher_list(SSL_CTX *ctx,
 char *str);

Parameters:

ctx A pointer to the SSL_CTX structure on which to operate.

str A null-terminated string containing a colon-separated list of
cipher descriptions, in decreasing order of preference. Each
cipher description defines a paticular combination of key
exchange method, type of certificates, encryption method and
type of message authentication code (MAC). The following
cipher descriptions are valid:

• DES-CBC-SHA: unlimited-bit RSA key exchange, RSA
certificates, 56-bit DES encryption in CBC mode and a
SHA-1 MAC.

• EXP-DES-CBC-SHA: 512-bit RSA key exchange, RSA
certificates, 40-bit DES encryption in CBC mode and a
SHA-1 MAC.

• EDH-DSS-DES-CBC-SHA: unlimited-bit ephemeral
Diffie-Hellman key exchange, DSA certificates, 56-bit
DES encryption in CBC mode and a SHA-1 MAC.

• EXP-EDH-DSS-DES-CBC-SHA: 512-bit ephemeral
Diffie-Hellman key exchange, DSA certificates, 40-bit
DES encryption in CBC mode and a SHA-1 MAC.

• NULL-MD5: unlimited-bit RSA key exchange, RSA
certificates, no encryption and an MD5 MAC.

61
OpenOSP Interface Specification

• NULL-SHA: unlimited-bit RSA key exchange, RSA
certificates, no encryption and a SHA-1 MAC.

10.1.12 SSL_CTX_use_PrivateKey

This function instructs the SSL library to use the private key contained in the specified file for
connections based on the specified SSL_CTX structure.

int SSL_CTX_use_PrivateKey_file(SSL_CTX *ctx,
 EVP_PKEY *pkey);

Parameters:

ctx A pointer to the SSL_CTX structure on which to operate.

pkey The private key to use. The EVP_PKEY type is defined by
OpenSSL.

10.1.13 SSL_CTX_use_certificate

This function instructs the SSL library to use the X.509 certificate contained in the specified file
for connections based on the specified SSL_CTX structure.

int SSL_CTX_use_certificate_file(SSL_CTX *ctx,
 X509 *x);

Parameters:

ctx A pointer to the SSL_CTX structure on which to operate.

x The certificate to use. The X509 type is defined by OpenSSL.

10.1.14 SSL_CTX_set_verify

OpenOSP calls this function to set the certificate verification mode and specify a callback
routine that the SSL library will call to verify each certificate during the SSL / TLS handshake.

void SSL_CTX_set_verify(SSL_CTX *ctx,
 int mode,
 int (*callback)(int ok, X509_STORE_CTX *store_ctx));

Parameters:

ctx A pointer to the SSL_CTX structure on which to operate.

mode The certificate verification mode to use. The following values
are valid:

• SSL_VERIFY_NONE: no verification is performed.

• SSL_VERIFY_PEER: verification is performed.

62
OpenOSP Interface Specification

 If SSL_VERIFY_PEER is used, it may also be ORed with one
or both of the following values:

• SSL_VERIFY_FAIL_IF_NO_PEER_CERT: the
verification will fail if the client does not present a
certificate.

• SSL_VERIFY_CLIENT_ONCE: the server will not ask for
the client’s certificate if a previous session is re-used.

callback A pointer to a callback function that the SSL library will call
with details of each certificate received from a client during the
SSL / TLS handshake. Note that this function definition is
specific to OpenSSL, and its implementation within OpenOSP
will need to be changed appropriately if another SSL library is
used. The parameters are as follows:

• ok: 1 indicates that the SSL library has determined that the
certificate is consistent and within-date. 0 indicates that
the SSL library has identified a problem with the
certificate.

• store_ctx: a pointer to a certificate store. The type of this
parameter, X509_STORE_CTX, is defined by the SSL
library; please refer to the OpenSSL code for details on
what it contains.

 The callback function returns 1 if it accepts the certificate and 0
otherwise.

10.1.15 SSL_CTX_set_cert_store

This function instructs the SSL library to use the X.509 certificate store specified for
connections based on the specified SSL_CTX structure.

void SSL_CTX_set_cert_store(SSL_CTX *ctx,
 X509_STORE *store);

Parameters:

ctx A pointer to the SSL_CTX structure on which to operate.

x The store to use. The X509_STORE type is defined by
OpenSSL.

10.1.16 SSL_CTX_set_ session_id_context

This function sets the session ID context for connections based on the specified SSL_CTX
structure.

63
OpenOSP Interface Specification

int SSL_CTX_set_session_id_context(SSL_CTX *ctx,
 const unsigned char *sid_ctx,
 unsigned int sid_ctx_len);

Parameters:

ctx A pointer to the SSL_CTX structure on which to operate.

sid_ctx The session ID context.

sid_ctx_len The size of the context in bytes.

10.1.17 SSL_CTX_set_ tmp_dh_callback

This function sets the callback for generating temporary DH keys for the specified SSL_CTX
structure.

void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
 DH *(*cb)(SSL *ssl,
 int is_export,
 int keylength));

Parameters:

ctx A pointer to the SSL_CTX structure on which to operate.

cb The callback function.

10.1.18 SSL_CTX_set_ tmp_rsa_callback

This function sets the callback for generating temporary RSA keys for the specified SSL_CTX
structure.

void SSL_CTX_set_tmp_dh_callback(SSL_CTX *ctx,
 RSA *(*cb)(SSL *ssl,
 int is_export,
 int keylength));

Parameters:

ctx A pointer to the SSL_CTX structure on which to operate.

cb The callback function.

10.1.19 RAND_set_rand_method

This function allows the caller to specify an alternate set of random number functions, e.g. to
support an external random number generator. Note that the supplied RAND_bytes()
replacement function must never fail, i.e. if there is a failure in the external RNG, then it should
call onto a backup such as the default OpenSSL RNG function.

void RAND_set_rand_method(RAND_METHOD *meth);

64
OpenOSP Interface Specification

Parameters:

meth Pointer to the structure containing the new RNG functions.
The type of this parameter is defined by the SSL library.

10.1.20 RAND_load_file

This function loads the random state information from file.

int RAND_load_file(const char *file_name,
 long bytes_to_read);

Parameters:

file_name Name of the random state file.

bytes_to_read Number of bytes to read from the file, or –1 for the entire file.

10.1.21 RAND_write_file

This function writes the random state information to file.

int RAND_write_file(const char *file_name);

Parameters:

file_name Name of the random state file.

10.2 Operational functions
This section describes the SSL API functions that OpenOSP uses during normal operation.
These include functions that create a new SSL connection context and implement SSL / TLS
handshaking and data transfer.

10.2.1 SSL_new

This function returns a pointer to a new (library-defined) SSL structure, using the supplied
SSL_CTX structure as a template. If the function fails, the return value is a null pointer.

An SSL structure contains all of the SSL library’s state information relating to a single
SSL / TLS connection.

SSL *SSL_new(SSL_CTX *ctx);

Parameters:

ctx A pointer to the SSL_CTX structure to use as a template.

65
OpenOSP Interface Specification

10.2.2 SSL_free

This function frees all the memory associated with an SSL structure.

void SSL_free(SSL *ssl);

Parameters:

ssl A pointer to the SSL structure to be freed.

10.2.3 SSL_set_fd

This function associates an SSL structure with a socket. All data sent or received using this
SSL structure will go via the specified socket.

int SSL_set_fd(SSL *s,
 int fd);

Parameters:

ssl A pointer to the SSL structure.

fd The file descriptor of the socket to be associated with the SSL
structure.

10.2.4 SSL_accept

This function initiates the SSL / TLS handshake. If the handshake is completed successfully,
this function returns 1; if there was an error, it returns –1. For a non-blocking socket, the
handshake does not complete immediately. In this case, SSL_accept() returns 0 and OpenOSP
then calls SSL_get_error() to find out what to do next.

int SSL_accept(SSL *ssl);

Parameters:

ssl A pointer to the SSL structure on which to operate.

10.2.5 SSL_get_error

This function provides information on what OpenOSP should do after calling SSL_accept(),
SSL_read() or SSL_write().

int SSL_get_error(SSL *ssl,
 int ret_code);

Parameters:

ssl A pointer to the SSL structure on which to operate.

ret_code The return code obtained from SSL_accept(), SSL_read() or
SSL_write().

66
OpenOSP Interface Specification

Return codes:

SSL_ERROR_NONE The operation completed successfully (only possible if
‘ret_code’ is greater than zero).

SSL_ERROR_ZERO_RETURNThe connection was closed cleanly.

SSL_ERROR_WANT_READ The operation did not complete and OpenOSP should select()
on the associated socket for a read operation.

SSL_ERROR_WANT_WRITE The operation did not complete and OpenOSP should select()
on the associated socket for a write operation.

SSL_ERROR_SYSCALL An I/O error occurred.

SSL_ERROR_SSL An SSL protocol error occurred.

10.2.6 SSL_write

This function sends data over the SSL / TLS connection associated with the specified SSL
structure. After calling this function, OpenOSP calls SSL_get_error() to find out what to do
next.

int SSL_write(SSL *ssl,
 const char *buf,
 int num);

Parameters:

ssl A pointer to the SSL structure on which to operate.

buf A pointer to the data to be sent.

num The number of bytes to be sent.

10.2.7 SSL_read

This function receives data from the SSL / TLS connection associated with the specified SSL
structure. After calling this function, OpenOSP calls SSL_get_error() to find out what to do
next. If the return value is greater than zero, it indicates the number of bytes that have been
received into the supplied buffer.

int SSL_read(SSL *ssl,
 char *buf,
 int num);

Parameters:

ssl A pointer to the SSL structure on which to operate.

buf A pointer to the buffer into which received data should be
placed.

67
OpenOSP Interface Specification

num The number of bytes available in the supplied buffer.

10.2.8 SSL_renegotiate

This function initiates a renegotiation on the SSL / TLS connection associated with the specified
SSL structure. The renegotiation does not necessarily complete immediately, but subsequent
calls to SSL_read() and SSL_write() will automatically send or receive outstanding
renegotiation messages until the renegotiation is complete.

int SSL_renegotiate(SSL *ssl);

Parameters:

ssl A pointer to the SSL structure on which to operate.

10.2.9 SSL_shutdown

This function sends a notification to the client that the SSL / TLS connection associated with the
specified SSL structure is about to go down. A return value of 0 indicates that further calls to
SSL_shutdown() are required.

int SSL_shutdown(SSL *ssl);

Parameters:

ssl A pointer to the SSL structure on which to operate.

10.2.10 SSL_set_app_data

This function allows OpenOSP to associate arbitrary data with an SSL structure.

int SSL_set_app_data(SSL *ssl,
 void *data);

Parameters:

ssl A pointer to the SSL structure on which to operate.

data An OpenOSP-defined value.

10.2.11 SSL_get_app_data

This function allows OpenOSP to retrieve the data that it previously associated with an SSL
structure using SSL_set_app_data(). The return value is the data.

void *SSL_get_app_data(SSL *ssl);

Parameters:

ssl A pointer to the SSL structure on which to operate.

68
OpenOSP Interface Specification

10.2.12 ERR_print_errors_fp

This function prints error information to the specified file in a format defined by the SSL
library. OpenOSP calls this function when an SSL library call returns an error code.

void ERR_print_errors_fp(FILE *fp);

Parameters:

fp A file pointer that identifies the file to which error information
should be printed.

10.2.13 RAND_bytes

This function returns the requested number of random bytes.

int RAND_bytes(unsigned char *buf,
 int num);

Parameters:

buf buffer to receive the random data.

num Number of bytes to return.

69
OpenOSP Interface Specification

References
The following references provide further information on relevant subjects:

PO OpenOSP Product Overview, version 1.2
Data Connection Limited, September 2000
MSM-0005-0102

OSP Telecommunications and Internet Protocol Harmonization Over
Networks (TIPHON); Open Settlement Protocol (OSP) for Inter-
Domain pricing, authorization and usage exchange.
ETSI TS 101 321 V2.1.0 (2000-05).

SCEP Cisco Systems’ Simple Certificate Enrollment Protocol (SCEP)
Cisco Systems, August 2000
http://search.ietf.org/internet-drafts/draft-nourse-scep-03.txt

SSL The SSL Protocol Version 3.0
Netscape Communications Corporation, November 1996
http://oem.netscape.com/eng/ssl3/draft302.txt

TLS RFC 2246: The TLS Protocol Version 1.0
T. Dierks and C. Allen, January 1999
http://www.ietf.org/rfc/rfc2246.txt

HTTP/1.0 RFC 1945: Hypertext Transfer Protocol – HTTP/1.0
T. Berners Lee, R. Fielding and H. Frystyk, May 1996
http://www.ietf.org/rfc/rfc1945.txt

HTTP/1.1 RFC 2616: Hypertext Transfer Protocol – HTTP/1.1
R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach
and T. Berners-Lee, June 1999
http://www.ietf.org/rfc/rfc2616.txt

S/MIME RFC 2311: S/MIME Version 2 Message Specification
S. Dusse, P. Hoffman, B. Ramsdell, L. Lundblade and L. Repka,
March 1998
http://www.ietf.org/rfc/rfc2311.txt

XML Extensible Markup Language (XML) 1.0
W3C, February 1998
http://www.w3.org/TR/REC-xml

PKCS #7 PKCS #7: Cryptographic Message Syntax Standard (version 1.5)
RSA Laboratories, November 1993
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html

PKCS #10 PKCS #10: Certification Request Syntax Standard (version 1.0)
RSA Laboratories, November 1993
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-10/index.html

http://search.ietf.org/internet-drafts/draft-nourse-scep-03.txt
http://oem.netscape.com/eng/ssl3/draft302.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc1945.txt
http://www.ietf.org/rfc/rfc2616.txt
http://www.ietf.org/rfc/rfc2311.txt
http://www.w3.org/TR/REC-xml
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-7/index.html
http://www.rsasecurity.com/rsalabs/pkcs/pkcs-10/index.html

	Contents
	1 Introduction
	1.1 Typographical conventions

	2 OpenOSP Interfaces Overview
	2.1 OSP APIs
	2.1.1 OSP API Parameters And Sequences

	2.2 Utility APIs

	3 Common Information for OSP APIs
	3.1 Callback mechanism
	3.2 Initialization sequence
	3.3 Termination sequence
	3.4 Common data structures and types
	3.4.1 OSP_ADDRESS
	3.4.2 OSP_CALL_ID
	3.4.3 OSP_CLIENT_ID
	3.4.4 OSP_CORRELATOR
	3.4.5 OSP_DESTINATION
	3.4.6 OSP_TOKEN
	3.4.7 OSP_USAGE_DETAIL
	3.4.8 OSP_TERM_CAUSE
	3.4.9 OSP_USAGE_STATISTICS
	3.4.10 OSP_USAGE_STATISTICS_PF
	3.4.11 OSP_USAGE_STATISTICS_MMVS
	3.4.12 OSP_STATUS
	3.4.13 OSP_SERVICE_INFO
	3.4.14 OSP_PROTOCOL_TYPE
	3.4.15 OSP_AUTH_INFO

	3.5 Return codes
	3.6 Signal Handling
	3.7 C implementation

	4 Control API
	4.1 osp_init
	4.2 osp_listen
	4.3 osp_term
	4.4 osp_client_verify_register
	4.5 POSP_CLIENT_VERIFY_CALLBACK
	4.6 POSP_CLIENT_DISCONNECT_CALLBACK
	4.7 osp_non_repudiation_register
	4.8 POSP_NON_REPUDIATION_CALLBACK
	4.9 osp_get_stack_statistics

	5 Usage Metering API
	5.1 osp_um_register
	5.2 POSP_UM_CALLBACK
	5.3 osp_um_response

	6 Authorization and Routing API
	6.1 osp_ar_register
	6.2 POSP_AR_AUTH_RQ_CALLBACK
	6.3 osp_ar_auth_response
	6.4 POSP_AR_AUTH_IND_CALLBACK
	6.5 osp_ar_auth_confirm
	6.6 POSP_AR_REAUTH_RQ_CALLBACK
	6.7 osp_ar_reauth_response
	6.8 POSP_AR_PRICING_IND_CALLBACK
	6.9 osp_ar_pricing_confirm
	6.10 POSP_AR_CAPS_IND_CALLBACK
	6.10.1 OSP_DEVICE_INFO
	6.10.2 OSP_CAPS
	6.10.3 OSP_RESOURCE
	6.10.4 OSP_SUPP_PROTOCOL
	6.10.5 OSP_DATA_RATE

	6.11 osp_ar_caps_confirm
	6.11.1 OSP_SERVICE
	6.11.2 OSP_SERVICE_URL
	6.11.3 OSP_CERTIFICATE

	7 Subscriber Authentication API
	7.1 osp_sa_register
	7.2 POSP_SA_CALLBACK
	7.3 osp_sa_response
	7.3.1 OSP_CREDIT_AMOUNT
	7.3.2 OSP_CREDIT_TIME

	8 Security API
	8.1 ccm_init
	8.2 PCCM_SSL_VERIFY_CALLBACK
	8.3 ccm_term
	8.4 ccm_pkcs7_sign
	8.5 ccm_pkcs7_verify
	8.6 ccm_pkcs7_encrypt
	8.7 ccm_pkcs7_decrypt
	8.8 ccm_get_cert
	8.9 ccm_get_cert_chain
	8.10 ccm_free_cert_chain
	8.11 ccm_request_new_cert
	8.12 PCCM_NEW_CERT_CALLBACK
	8.13 ccm_random

	9 Resource API
	9.1 rm_init
	9.2 rm_term
	9.3 rm_get_mem
	9.4 rm_release_mem
	9.5 rm_realloc_mem
	9.6 rm_get_structure
	9.7 rm_release_structure
	9.8 rm_request_thread_create
	9.9 rm_notify_thread_exit

	10 Secure Sockets Layer (SSL) API
	10.1 Configuration functions
	10.1.1 SSL_library_init
	10.1.2 SSL_load_error_strings
	10.1.3 CRYPTO_set_mem_functions
	10.1.4 CRYPTO_set_id_callback
	10.1.5 CRYPTO_set_locking_callback
	10.1.6 SSLv23_server_method
	10.1.7 SSL_CTX_new
	10.1.8 SSL_CTX_free
	10.1.9 SSL_CTX_set_options
	10.1.10 SSL_CTX_sess_set_cache_size
	10.1.11 SSL_CTX_set_cipher_list
	10.1.12 SSL_CTX_use_PrivateKey
	10.1.13 SSL_CTX_use_certificate
	10.1.14 SSL_CTX_set_verify
	10.1.15 SSL_CTX_set_cert_store
	10.1.16 SSL_CTX_set_ session_id_context
	10.1.17 SSL_CTX_set_ tmp_dh_callback
	10.1.18 SSL_CTX_set_ tmp_rsa_callback
	10.1.19 RAND_set_rand_method
	10.1.20 RAND_load_file
	10.1.21 RAND_write_file

	10.2 Operational functions
	10.2.1 SSL_new
	10.2.2 SSL_free
	10.2.3 SSL_set_fd
	10.2.4 SSL_accept
	10.2.5 SSL_get_error
	10.2.6 SSL_write
	10.2.7 SSL_read
	10.2.8 SSL_renegotiate
	10.2.9 SSL_shutdown
	10.2.10 SSL_set_app_data
	10.2.11 SSL_get_app_data
	10.2.12 ERR_print_errors_fp
	10.2.13 RAND_bytes

	References

